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Abstract

Many climate model predictions of future climate change due to increasing greenhouse

gases indicate polar warming two to three times the global mean (Holland and Bitz, 2003).

One important factor in this enhanced polar warming is thought to be the snow and sea

ice albedo feedback (Curry et al. 1995). The essence of this feedback is the strong contrast

in how open water and snow-covered or bare sea ice reflect, absorb, and transmit incoming

solar radiation. Snow and sea ice have high albedo; open water has low albedo. The high

albedo of snow and sea ice is caused by multiple scattering attributed to individual snow

grains and inclusions of gas, brine and precipitated salt crystals embedded in sea ice (Light

et al. 2004). An accurate representation of solar radiation transfer in the snow/sea ice

system requires a multiple scattering parameterization (Jin et al. 1994; Curry et al. 2001).

Interactions between snow and sea ice and solar radiation in the present version of the

Community Climate System Model (Version 3) are not based on a multiple scattering

calculation. Rather, these interactions are based on empirical parameterizations which

depend solely on the depth of snow (if any) overlying sea ice, sea ice thickness and its

surface temperature. Considerable arbitrariness and inconsistency are inherent in these

parameterizations since it is possible to alter one part of this parameterization independent

of other parts, which is often done when tuning sea ice albedo to achieve acceptable CCSM

present-day simulations. Because of this arbitrariness and inconsistency, it is likely that

the solar radiation parameterization for snow and sea ice in the present CCSM may not

adequately represent the radiation physics necessary for an accurate estimate of the snow

and sea ice albedo feedback.

A Delta-Eddington multiple scattering radiative transfer model is presented here as an

alternative treatment for the interactions between solar radiation and snow and sea ice.

Optical properties for snow and sea ice are prescribed based on physical measurements.

These optical properties are then used in the radiative transfer model to compute the

albedo, absorption within snow and sea ice and transmission to the underlying ocean.

Snow and sea ice surface albedos and transmissions in this parameterization agree well

with observations made during SHEBA (Perovich et al. 2002). The effects of absorp-

tion due to impurities such as carbon soot can be included without loss of consistency.

This parameterization also provides opportunities for further improvements in the CCSM

treatment of snow and sea ice physics, such as snow aging, vertical gradients in snow

pack properties, and the effects of surface melt ponds. Employing the Delta-Eddington

solar radiation parameterization for sea ice in CCSM will afford more consistent tuning for

present climate, more accurate simulation of control climate annual cycle and variability,

and provide increased confidence in simulations of future climate change.
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1. Introduction

The Community Climate System Model, Version 3 (CCSM3) is a state-of-the-art cou-

pled climate model (Collins et al., 2006), which includes a sea ice component (Briegleb

et al. 2004). This sea ice component is a considerable improvement over its predecessor

(Weatherly et al. 1998). It consists of elastic-viscous-plastic dynamics, energy conserving

thermodynamics with resolved vertical temperature profile and explicit brine pocket pa-

rameterization, ice thickness distribution with five categories, linear remapping for thick-

ness space evolution, mechanical redistribution due to rafting and ridging, ice strength

computed from energetics, lateral and bottom melt processes, and second order horizontal

advection using remapping.

Despite these improvements in thermodynamic and dynamic representation of sea ice pro-

cesses, the solar radiation parameterization is relatively simple. Apparent optical proper-

ties (AOPs), including the albedo and extinction of solar radiation, are prescribed. Various

measurements are used to correlate these optical properties with snow depth, sea ice thick-

ness, and surface temperature.

Given the importance of the snow/sea ice albedo feedback in climate sensitivity (Maykut

and Perovich, 1987, Curry et al. 1995, Holland and Bitz, 2003), this relatively simple

method for computing the partitioning of solar radiation may not include enough physics

to accurately describe the feedback. Holland and Bitz (2003) show how several models

involved in the Coupled Model Intercomparison Project have polar warming in response

to doubled CO2 that is about two to three times that of the global mean. Snow and sea

ice albedo feedback, as well as the basic sea ice simulation state, are important factors in

polar amplification.

How well is the physics of solar radiation being represented in climate models other than

CCSM3? Curry et al. (2001) compare several popular snow/ice albedo parameterizations

against SHEBA/FIRE data. None are based on a multiple scattering method. While

some of the parameterizations compare favorably with the data, all are based on the same

method of prescribing AOPs (snow/sea ice albedo) based on gross physical properties

(surface temperature and snow/sea ice thickness). In addition, Curry et al. 2001 (p. 15355)

write “These calculations illustrate that two different albedo parameterizations used in the

same sea ice model, with the same average surface albedo and very nearly the same baseline

conditions, can produce markedly different strengths of the ice-albedo feedback mechanism.

While it appears that a simple albedo parameterization tuned to give appropriate results

for snow-covered and melting ice can give reasonable results when used in a sea ice model,

it may be important to include a more complex albedo treatment to reproduce correctly

the ice-albedo feedback and radiative interactions with the atmosphere.”.

Here we present an alternative parameterization for the interaction between sea ice and

solar radiation in CCSM. Rather than prescribing AOPs, it prescribes inherent optical

1



properties (IOPs) for snow-covered, bare and ponded sea ice. Inherent optical properties

define the scattering and absorption properties for snow and sea ice and included absorbers.

The IOPs provide a framework for a physically based, self-consistent multiple scattering

calculation of the disposition of solar radiation in the sea ice system.

These IOPs are then used in a Delta(also δ)-Eddington multiple scattering parameteri-

zation, along with information about the boundary conditions (snow depth and sea ice

thickness) and incident light, to compute AOPs, including the albedo, internal absorption,

and transmission to the underlying ocean. While there are several methods of approxi-

mating multiple scattering that could be used for the sea ice system, the Delta-Eddington

method is one that the first author of this report is familiar with, and one which gives

accurate and efficient results, as will be illustrated. Such a method has been used success-

fully in the atmospheric component of CCSM (Collins et al. 2004) for computing radiative

transfer through gas molecules, aerosols and cloud particles. A small modification to the

technique was required to approximate refraction at sea ice and melt pond surfaces.

In this report, we first review the solar radiation parameterization in the sea ice component

of the present version of CCSM (Section 2). This gives the rationale for presenting an alter-

native solar radiation parameterization. An overview of the alternative Delta-Eddington

solar radiation parameterization for sea ice is then presented (Section 3), then the specifics

of the theory (Section 4), data (Section 5), comparisons with other calculations (Section

6), and finally a summary (Section 7). The appendices present the Delta-Eddington multi-

ple scattering solution for a single layer, the solution for inter-layer scattering, a summary

of the polar atmospheric radiation model used for various calculations in this work, some

issues relevant to varying the number of snow and sea ice layers, and a glossary of acronyms.

2. Present Version of Solar Radiation in CCSM Sea Ice

In this section we review the solar radiation parameterization in the sea ice component of

CCSM3. We will highlight and discuss the origin, rationale and limitations of the present

parameterization.

The atmospheric component of CCSM3 provides the sea ice component with the downward

solar radiation flux incident at the top sea ice surface, separated firstly into two terms by

spectral region and each secondarily into two more terms which distinguish the direct solar

beam radiation from the diffuse solar radiation. These solar radiation fluxes are assumed

to be incident uniformly upon all categories of sea ice thickness in the sea ice component,

so that the solar radiation parameterization reviewed in this section is the same for each

sea ice thickness category. The final sea ice component albedos and fluxes are computed

by aggregating the albedo and flux for each category over the ice thickness distribution

(Briegleb et al. 2004).

Solar radiation in the atmospheric component is spectrally distinguished because many
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radiative processes in both the atmosphere and the surface have different character in

two broad wavelength regions: less than 700nm and greater than 700nm. Thus the region

with wavelengths less than 700nm, termed the visible band, is distinguished from the region

with wavelengths greater than 700nm, termed the near-infrared band (the 700nm wavelength

is a somewhat arbitrary but convenient separating wavelength for these two bands). In

the atmosphere these two wavelength regions distinguish the relatively transparent visible

band from the relatively opaque near-infrared band.

Solar radiation in the atmospheric component is separated into direct and diffuse portions

to take into account any solar zenith angle (the angle between the sun and the zenith)

dependence of the surface albedo. The direct term is that due to the non-scattered solar

beam that penetrates to the surface; the diffuse term is that due to multiple scattering

out of the solar beam in the atmosphere and/or with the surface that results in diffuse

surface radiation. This diffuse radiation is assumed to be isotropic in the downwards

hemisphere, though in reality there is some angular dependence. Note that the diffuse

radiation flux accounts for multiple reflections between the surface and the atmosphere

(usually due to clouds), a process that is particularly important in high albedo snow and

ice covered regions. For example, such multiple reflections can substantially increase the

downwelling diffuse solar radiation at the surface for cloudy conditions compared to clear

sky conditions.

The four separate solar radiation fluxes, whose sum is the total downwelling solar radiation

flux incident on the snow and sea ice surface, can be written as:

FSWDN = FSWvsdr + FSWvsdf + FSWnidr + FSWnidf (1)

where we use the notation of Briegleb et al. (2004), noting that in CCSM3, “short-

wave”=SW is synonymous with “solar”. The visible band direct and diffuse fluxes are

then FSWvsdr and FSWvsdf respectively, while the near-infrared band direct and diffuse fluxes

are FSWnidr and FSWnidf respectively. For example, the subscript SWvsdr refers to the solar

(i.e. shortwave flux, SW), visible band (vs) and direct beam (dr), while SWnidr refers to

the corresponding near-infrared band (ni) flux. The subscript “df” refers to the diffuse

flux. The term “shortwave” is used in CCSM3 to distinguish solar radiation fluxes from

the “longwave”, or thermal radiation fluxes. The latter are not referred to in this report,

where we focus exclusively on the solar (i.e. “shortwave”) fluxes.

Any parameterization of solar radiation at the Earth surface in CCSM3 must use these

fluxes as upper boundary conditions for the reflection and absorption of solar radiation at

and below the surface. For general radiation modeling of the surface, the solar zenith angle

is also required, but in the sea ice component of CCSM3 it is not used, as the albedos for

the direct solar beam are not distinguished from albedos for diffuse solar radiation. As

will be shown in section 6.3, the ‘zenith angle dependence’ of albedos and absorbed fluxes

for snow, sea ice, and pond is not negligible, and should be allowed for.
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For the present solar radiation parameterization in the sea ice component of CCSM3,

snow/ice albedo depends on spectral band (visible vs and near-infrared ni), surface tem-

perature Ts (of snow if present, or sea ice, ◦C), snow thickness hs (m), sea ice thickness

hi (m), and CCSM3 ocean and sea ice horizontal resolution (x1 and x3, referring to the

nominal 1◦ × 1◦ and 3◦ × 3◦ resolutions, respectively; see Briegleb et al. (2004)).

We will first consider snow-covered sea ice, then bare and ponded sea ice.

For the present solar parameterization in CCSM3, snow on sea ice is distinguished by non-

melting and near-melting conditions. The surface temperature Ts is used to distinguish

these two conditions. For Ts < −1◦C, non-melting snow albedos are

αs
vsdf (non melting) = 0.96 (×1), 0.91 (×3)

αs
nidf (non melting) = 0.68 (×1), 0.63 (×3)

(2)

where superscript “s” refers to snow, and ×1 and ×3 refer to the two standard CCSM3

ocean and sea ice horizontal resolutions respectively. The −1◦C criterion is purely arbitrary,

as discussed below. Note that only the albedos for diffuse solar radiation (“df”) are shown,

as the albedos for direct solar radiation are identical for the respective bands. Broadband

albedos can be estimated by knowing the partition of visible/near-infrared fluxes from the

atmosphere. This partition depends mainly on solar zenith angle, cloudiness and surface

albedo. Typical partitions for clear sky snow are 52%/48%, for clear sky sea ice (1.5 m

thick) 51%/49%, and for clear sky deep ponds (.35 m pond over 1.5 m sea ice) 50%/50%.

For overcast sky, typical partitions range from 62%/38% for bright snow and 61%/39% for

dark pond, to 65%/35% for bare sea ice to 69%/31% for darker snow. A mean overcast sky

partition would be 65%/35%. If we take the 65%/35% vs and ni partition, the broadband

albedos are 0.86(×1) and 0.81(×3).

Near-melting snow albedos are determined for Ts > −1◦C by:

∆Ts = 0, Ts < −1◦C

= Ts + 1, Ts > −1◦C

αs
vsdf (near melting) = αs

vsdf (non melting)− 0.10 ∆Ts

αs
nidf (near melting) = αs

nidf (non melting)− 0.15 ∆Ts

(3)

At Ts = 0◦C, the near-melting albedos are .86, .53 vs and ni respectively (×1), and .81, .47 vs

and ni respectively (×3), with a broadband 65%/35% value of 0.745(×1) and 0.691(×3).

For snow on sea ice, the present solar radiation parameterization does not allow for physical

property evolution. It is not known how long the snow has been on the surface, or whether

previous melting and refreezing has occurred. Snow depth is increased by snow fall and

decreased by snow melt. Since there is no snow aging dependence, snow can melt and then

freeze again, and for Ts < −1◦C, the snow albedos will return to the non-melting values

(Eq. 2); there is no dependence on snow thickness or on the albedo of the underlying sea
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ice. Again, these are diffuse albedos, as the zenith angle dependence for the snow albedo

is neglected. The temperature boundary −1◦C was chosen, rather than 0◦C, because in

reality for near-melting conditions, slight declines in Ts below melting temperature do not

lead to large increases in albedo, unless declines become significant. It is acknowledged

that this is a crude empirical approximation.

For the non-melting snow albedos of Eq. 2 and the near-melting albedos of Eq. 3, the

declines in albedo between resolutions in the former and between spectral bands in the

latter use spectral partitions (i.e. changes in spectral albedos) that are either uniform (Eq.

2) or rough guesses (Eq. 3). For example, for the tuned albedos of Eq. 2, the decline in

visible albedo (.05) equals that for the near-infrared albedo. One would not expect this in

actuality. As will be shown in Section 5.2 of this report, snow albedo depends on grain

size and spectral band. The temperature dependent declines in snow albedo in Eq. 3 (.10

and .15) are rough guesses whose accuracy is not known.

In reality, snow falls initially as a distribution of snow crystal shapes and sizes, but rapidly

transforms once settled on the surface primarily by vapor diffusion into nearly uni-modal

and roughly spherically-shaped snow grains (Flanner and Zender, 2006). These grains

continue growing slowly over time by temperature-dependent vapor diffusion. Until signif-

icant compaction occurs, density remains low and there is considerable air space between

the contiguous, nearly spherical snow grains. Temperatures near melting result in a rapid

growth in snow grain size, and melting results in the presence of liquid water within the

snow. The addition of liquid water, along with increasing grain size, generally cause snow

albedos for melting or near-melting conditions to be lower than those for non-melting fresh

snow.

The bare sea ice (i.e. no snow and no melt pond) albedos for non-melting (Ts < −1◦C),

thick sea ice (hi > 0.5 m) are:

αi
vsdf (non melting, thick) = 0.73 (×1), 0.68 (×3)

αi
nidf (non melting, thick) = 0.33 (×1), 0.30 (×3)

(4)

where the superscript “i” refers to bare sea ice. The bare sea ice albedos for non-melting

(Ts < −1◦C), thin sea ice (hi < 0.5 m) are:

αi
vsdf (non melting, thin) = αo (1 − fh) + αi

vsdf (non melting, thick) fh

αi
nidf (non melting, thin) = αo (1 − fh) + αi

nidf (non melting, thick) fh
(5)

where αo is the open ocean diffuse albedo (= .06), and

fh = min([ tan−1(cfh hi) / tan−1(cfh 0.5) ], 1) (6)

with cfh = 4 m−1. The 0.5 m sea ice thickness between thin and thick albedos is somewhat

arbitrary, being loosely based on measurements. The tan−1 dependence of albedo for thin

sea ice is loosely based on theoretical arguments. Note that the spectral and zenith angle
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dependences of ocean albedo are ignored. For the greatest consistency with the ocean

component of CCSM3, the spectral and zenith angle dependence of ocean albedo in the

sea ice component should be identical to that of the ocean component.

The thickness dependent coefficients cfh and 0.5 in Eq. 6 can be used as tuning coefficients,

independent of any other changes in the surface albedo parameterization. Notice also that

changes in band albedo for the two resolutions of Eq. 4 differ from those in Eq. 2 for snow;

again the accuracy of these changes is not known.

Liquid water from snow melt collects at the base of the snow and either percolates through

the sea ice, runs off into the ocean through leads or other fissures in the sea ice, or drains

laterally into low-lying regions on the surface of sea ice. Liquid water from bare melting sea

ice follows similar paths, resulting in melt ponds covering a horizontal fraction of melting

bare sea ice (Perovich et al. 2002). Melt ponds are mostly transparent to visible radiation,

but are strongly absorptive of near-infrared radiation. However, the sea ice under melt

ponds, as will be shown in section 5.3, has less scattering than non-ponded bare melting

sea ice. This appears to be due to melt pond water filling the voids in the surface layer of

melting sea ice. These effects combine to reduce pond albedo compared to adjacent bare

melting sea ice albedo. In the present solar parameterization for sea ice in CCSM3, this

effect is implicitly approximated by:

αpi
vsdf (near melting) = αi

vsdf (non melting, thin or thick) − 0.075 ∆Ts

αpi
nidf (near melting) = αi

nidf (non melting, thin or thick) − 0.075 ∆Ts

(7)

where the superscript “pi” refers to ponded sea ice, and ∆Ts is from Eq. 3. The spec-

tral albedos at 0◦C are 0.655, 0.255 (×1) and 0.605, 0.225 (×3) with the broadband albedo

at 65%/35% partition of 0.515 (×1) and 0.472 (×3). Thus, when bare sea ice has surface

temperature near melting, the effects of melt ponds are implicitly included. The spectrally

uniform decline in band albedo of .075 for ponded ice is simply an educated guess, con-

strained somewhat by SHEBA measurements (Perovich et al. 2002). Note that there is

no explicit pond fraction or depth, and no explicit pond albedo (i.e. for complete pond

coverage over sea ice).

Notice that the resolution-tuned albedos, spectral band partitions, and near-melting albedo

declines of Eqs. 2, 3, 4 and 7, can all be modified independently of one another.

It was mentioned above that snow albedo has no dependence on snow thickness (Eqs. 2

and 3). This is the case when thick snow overlies sea ice, for which complete coverage is

assumed. However, it is observed that when snow thickness drops to a few centimeters,

some underlying sea ice is uncovered due to variations in surface topography of sea ice. To

crudely approximate this effect, the total horizontally-averaged snow and sea ice albedo

over each ice thickness category is computed by weighting the snow and sea ice albedos

together using the following empirical fraction of horizontal coverage of the sea ice by the
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overlying snow of thickness hs:

fs =
hs

hs + 0.02
(8)

This accounts for small vertical inhomogeneities in the sea ice which prevent small layers

of snow from completely covering the ice. It is also advantageous for numerical reasons

by allowing a smoother transition between snow and ice albedos for small snow thickness.

The value of .02 m was taken from observations that a couple of centimeters of snow covers

quite a bit of the underlying sea ice. Thus, the total horizontally-averaged snow and sea

ice albedo is:
αvsdf = fs αs

vsdf + (1 − fs) αpi
vsdf

αvsdr = αvsdf

αnidf = fs αs
nidf + (1 − fs) αpi

nidf

αnidr = αnidf

(9)

where the albedos with no superscripts refer to the area averaged albedo over sea ice in

each ice thickness category. As noted above, the direct albedos are assumed identical to

the diffuse as explicitly shown in Eqs. 9. The total albedos are limited for thin, bare

melting sea-ice to be greater than the ocean albedo αo.

For the present solar radiation parameterization in the sea ice component of CCSM3,

the surface albedo, along with the four fluxes of Eq. 1, are used to determine the column

absorption. Light not backscattered to the atmosphere is absorbed in the snow, sea ice and

ocean column. The absorbed flux for visible, near-infrared bands, and the total absorption

is:

FSWvs = FSWvsdr (1 − αvsdr) + FSWvsdf (1 − αvsdf ) (10)

FSWni = FSWnidr (1 − αnidr) + FSWnidf (1 − αnidf ) (11)

FSW = FSWvs + FSWni (12)

for the two spectral bands individually (Eqs. 10,11) and for the total solar radiation (Eq.

12).

Once band absorption is determined, a fixed fraction of each band absorption is considered

absorbed at the surface, which then contributes to the surface temperature evaluation of

the sea ice component (Briegleb et al., 2004). The rest of the band absorbed flux is

assumed to penetrate the surface and be absorbed both within the sea ice interior as well

as to penetrate into the underlying ocean. This approach only approximates the actual

radiative transfer within the column. However, as we will discuss in this report in section

3, this approach does make use of the observation that the bulk of the backscattering

from snow and sea ice surfaces occurs in fairly thin surface layers, and so the present

solar parameterization approach is a reasonable first-order approximation. The amount

of flux absorbed in the column used for the surface energy balance calculation is given

by FSWvs − I0vs for the visible and FSWni − I0ni for the near-infrared, where I0vs, I0ni are the
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portions of absorbed solar radiation in the visible and near-infrared that penetrate the

surface, respectively, given by:

I0vs = 0.0, I0ni = 0.0 snow over sea ice (13)

I0vs = 0.70 FSWvs (1 − fs), I0ni = 0.0 bare and ponded sea ice (14)

For both snow and sea ice, the portion of total absorbed flux not penetrating into the

sea ice is taken to be absorbed immediately at the surface. Thus, in the present sea ice

component of CCSM3, there is an implied surface layer of unspecified thickness. While I0

values (Eqs 13 and 14) may be good approximations for thick ice, they likely break down

for thin ice conditions.

The internal heating (flux divergence) for the solar radiation penetrating below the surface

layer is:

QSW = − d

dz
{I0vs e−κvsz} (15)

where z is the vertical coordinate in the ice increasing downwards from the ice surface

(z = 0), and κvs the spectral absorption coefficient, evaluated using a radiation model

(Gary Maykut, personal communication). Note that there is no distinction made between

direct or diffuse solar radiation: in effect, we assume solar radiation penetrating the surface

is diffuse. Also, the functional form of penetration in Eq. 15 is that for pure absorption;

in effect, all scattering occurs at the surface while the rest of the ice is purely absorbing.

The solar radiation flux that penetrates to the underlying ocean through sea ice of thickness

hi, all of which is assumed to be absorbed in the ocean, is:

QSWocn = I0vs e−κvshi (16)

This completes the review of the solar radiation parameterization in the sea ice component

of CCSM3. This parameterization is a good first step in describing solar radiation interac-

tion with snow, bare sea ice and (implicitly) melt ponds. As shown in this section however,

the parameterizations do not include explicit multiple scattering, and as such are prone to

inconsistency and arbitrariness. It is difficult to tune such a parameterization consistently.

Albedos and sea ice absorption are only approximately constrained by observations. Mod-

ifying this parameterization, for example to include absorbers such as algae, carbon soot,

and sediment, would be difficult to do in a physically consistent fashion for all possible sea

ice states. Improvements to the parameterization, such as snow aging, vertical gradients

in snow properties and an explicit treatment of melt ponds, would be difficult to make in

a general and consistent manner.

These shortcomings in the sea ice solar radiation parameterization of CCSM3 can be

attributed to the absence of a treatment for the fundamental radiation physics of multiple

scattering. Thus, we propose an alternative solar radiation parameterization for sea ice in

CCSM, one that is fundamentally based on the radiation physics of multiple scattering.

We present an overview of this alternative parameterization in the next section.
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3. Overview of the Delta-Eddington Solar Radiation Treatment for Sea Ice

In this section we present a general overview of the Delta-Eddington solar radiation pa-

rameterization for computing radiative transfer in sea ice. Sections 4 and 5 outline in more

detail the theory and the data for this parameterization, respectively.

We first consider the boundary conditions for the Delta-Eddington multiple scattering

parameterization. The previous section noted that in CCSM, the upper boundary condition

for any solar radiation parameterization at the Earth surface are the four radiation fluxes

from the atmosphere (Eq. 1). This new parameterization additionally requires the solar

zenith angle (in the form of the cosine solar zenith angle, µ0), to distinguish the direct solar

beam from the diffuse solar radiation. The lower boundary conditions are ocean albedos

at the sea ice/ocean interface, for the visible and near-infrared bands, for both direct and

diffuse radiation.

As in the atmosphere, the two spectral bands (visible and near-infrared wavelengths) are

employed in this parameterization. The near-infrared band is broken into two sub-bands

and albedos and fluxes are evaluated before summing to get the total near-infrared band

values. Three types of sea ice surface conditions are treated: snow-covered sea ice, bare

sea ice, and ponded ice. This parameterization assumes horizontal homogeneity in each of

these surface conditions, thus ignoring edge effects between them.

The CCSM3 sea ice model has one snow layer overlying four sea ice layers for computing

thermodynamic heat transfer (Briegleb et al. 2004). To evaluate internal radiative ab-

sorption in these layers, radiative fluxes must be evaluated at all interfaces between layers.

This vertical grid structure in the present sea ice model is used for the Delta-Eddington

radiative transfer with the exception that the top layer is further divided into two layers.

Appendix D discusses how the Delta-Eddington solar radiation treatment can be applied

to situations with different numbers of snow and sea ice layers.

Three considerations lead us to sub-dividing the top sea-ice layer: (1) observations show

that sea ice roughly above freeboard is distinguished by a coarse, near-granular surface layer

underlain by a denser drained layer (Light et al. in review); (2) in CCSM3 a fraction of the

solar radiation absorbed in the sea ice is used for the surface energy balance calculation,

and this includes absorption in snow (if present) and in an implicit ice surface layer; and (3)

the need to account for refraction in sea ice, which normally occurs at refractive boundaries

between media. It is known that dry snow is granular in structure, composed of individual

snow grains, while the top several centimeters of melting sea ice often appears granular

as well. As depth increases in sea ice and the ice gradually becomes more solid, at some

point it possesses a refractive boundary.

For this parameterization we make explicit the surface absorption by breaking the top sea-

ice layer into two sub-layers (see Table 1 and Fig. 1), roughly consistent with observations.

We index the undivided layers as in the CCSM sea ice model (i.e. layers 2, 3, 4) each with
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layer thickness hi/4, where hi is the total ice thickness. We term these layers “interior”

(INT). The top layer is divided into two sub-layers with indices 1/4 and 3/4, where the

thickness of the 1/4 layer is .05 m (Grenfell and Maykut, 1977) for ice thicker than hi = 1.5

m, and hi/30 for hi < 1.5 m. This layer is termed the “surface scattering layer” (SSL). The

second sub-layer indexed 3/4 is termed the “drained layer” (DL). The total 1/4 sub-layer

and 3/4 sub-layer thickness is hi/4. Since sea ice in CCSM3 can be as thin as 0.1 m, the

minimum SSL layer thickness is .0033 m. For bare sea ice the radiation absorbed in the

SSL is included in the surface temperature calculation. We note that a .05 m thick SSL is

consistent with the length scale l =
√

kt = .06 m for ice thermal diffusivity k ≈ 1 × 10−6m2s−1

and time scale t = 1hr of flux exchange with the atmosphere (Briegleb et al. 2004).

In addition to the ice layers, we add a level 0 corresponding to a layer of snow or melt

pond overlying the sea ice. Analogously to sea ice, we sub-divide the snow layer overlying

sea ice, based on the thermodynamic requirements of surface energy balance and finite

heat capacity of snow. The snow surface scattering layer, based on thermal length scale

for one hour, is taken to be .04m. When sea ice is covered with pond, the absorption

in the pond layer 0 is added to the absorption in the 1/4 sea ice layer for the surface

temperature calculation. This approach assumes pond has zero heat capacity and is well-

mixed vertically. Multiple snow and pond layers are possible (Appendix D).

Table 1. Level Structure of the Delta-Eddington Solar Radiation Treatment. Indices

based on four layer CCSM3 sea ice. hs is snow thickness, hp is pond thickness, and hi is

ice thickness. The 1/4 layer thickness, h1/4, is .05m or hi/30, whichever is smaller. The

refractive boundary is placed at the top of the 3/4 layer, and has no physical thickness.

For the case of snow covered and bare sea ice, the refractive boundary is as shown, while

in the case of pond over sea ice, the refractive boundary is placed at the top of layer 0, i.e.

at the top of the pond. SSL thickness limited to half the layer thickness as appropriate.

Level Media Thickness

0 (SSL) Snow or Pond hSSL = .04 m or hs,hp/2

0 (INT) Snow or Pond hs, hp - hSSL

1/4 (SSL) Sea Ice Surface Scattering Layer .05 m (or hi/30) = h1/4

Refractive Boundary none

3/4 (DL) Sea Ice Drained Layer hi/4 - h1/4

2 (INT) Sea Ice Interior hi/4

3 (INT) Sea Ice Interior hi/4

4 (INT) Sea Ice Interior hi/4

This parameterization is designed to accommodate thick as well as thin sea ice. Table 1

shows that the SSL remains at 5 cm for all sea ice thicker than 1.5 m, while for sea ice of
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thickness less than 1.5 m, the SSL is a fixed fraction of total sea ice thickness (hi/30, Table 1

and Fig. 1). Perovich et al. (2002) discuss how despite considerable surface ablation during

the summer, a SSL is maintained. This parameterization thus assumes that ice thinner

than 1.5 m maintains a SSL with thickness a fixed fraction of total sea ice thickness and

therefore freeboard. A vertically weighted mean density (from Table 9) is 0.888 Mg m−3,

which implies a freeboard of .112hi. Thus, we assume that the SSL maintains a constant

fraction (about 30%) of ice freeboard for ice thinner than 1.5 m. Note that the specific

fraction (1/30) of hi for thin ice SSL thickness was chosen to give the best agreement with

limited observations (see section 6.2). The DL on the other hand, for a four evenly-spaced

sea ice model as CCSM3, has a thickness for ice thinner than 1.5 m of hi/4−hi/30, or .217hi,

which is nearly twice freeboard (see Fig. 1).

We associate inherent optical properties (IOPs) to the snow layer, to pond water, and

to each sea ice layer. These IOPs are extinction coefficient k, single scattering albedo

ω, and asymmetry parameter g. They are considered vertically and horizontally uniform

throughout each layer shown in Table 1 and Fig. 1. The extinction coefficient k (m−1) is

a measure of the total scattering and absorption occurring within each layer. Its inverse

(1/k) is a typical length scale of radiation propagation in the layer before scattering and/or

absorption occurs. The single scattering albedo ω is the probability that a single event

results in scattering (verses absorption), ranging from 0 to 1. The asymmetry parameter

g is the integrated cosine weighted phase function, ranging from -1 to +1. It is a measure

of the scattering asymmetry, where -1 is complete backscattering, 0 is equal backward and

forward, and +1 is complete forward scattering.

The IOPs for snow and sea ice are derived from information about the shape, number, and

size of ice grains (snow) and brine, gas, and precipitated salts (sea ice). For snow, Flanner

and Zender (2006) and Grenfell and Warren (1999) note that ice media of non-spherical

particles, for hemispheric flux calculation within 5% accuracy, can be represented by a

collection of ice spheres that conserves total volume and surface area regardless of snow

crystal habit. Furthermore, realistic particle size distributions about an effective radius

have minimal impact on fluxes compared to mono-disperse (i.e. single size) distributions

(Mark Flanner, personal communication). Thus, we compute snow IOPs assuming snow

grains can be modeled as ice spheres of equivalent radii from 5µm to 2500µm. For bare

and ponded sea ice, temperature dependent changes in the ice density, salinity, and brine

volume are not considered. Instead, we make use of well-observed SHEBA bare ice and

ponded ice cases, and infer IOPs from surface spectral albedo observations and a structural-

optical model (Light et al. 2004).

We assume that snow covers sea ice until snow depth is less than .03 m. For snow depth less

than .03 m, we assume a fractional snow coverage proportional to the snow depth (Allison

et al. 1993, Brandt et al. 2005). When snow melts completely, bare sea ice and melt ponds

are uncovered (Perovich et al. 2002). Pond areal fraction and pond depth are required to
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complete the radiative transfer calculation (see Fig. 2).

We use the same two spectral bands required by the atmospheric component of CCSM. The

wavelength boundaries are: 0.2 − 0.7 µm and 0.7 − 5.00 µm for the visible and near-infrared

bands, respectively. To better resolve changing IOPs from the visible to the near-infrared,

we break the near-infrared band into two sub-bands of wavelengths 0.7− 1.19 and 1.19− 5.0

µm. We use a relation between the direct and diffuse near-infrared solar radiation to

partition the near-infrared solar fluxes received from the atmosphere into these two sub-

bands. Once the sub-band albedos and fluxes are computed, they are summed with the

same partition to obtain the 0.7 − 5.0 µm band values to return to the atmosphere. Sub-

dividing the near-infrared band in this way allows better resolution of the penetration of

near-infrared radiation below the snow-covered and bare sea ice surfaces, particularly for

thin snow and sea ice.

To account for the strong forward scattering in snow and sea ice, we use the Delta-

Eddington method (Joseph et. al 1976). This method assumes the strong forward scat-

tering peak can be represented as a δ-function, which allows a scaling of the radiative

transfer equation. Once scaled, the resulting transfer equation can be solved by the usual

Eddington approximation (Shettle and Weinman, 1970).

The Delta-Eddington solar radiation solution proceeds as follows. Given the incident spec-

tral fluxes (Eq. 1), the solar zenith angle, the spectral reflectivities of the underlying ocean,

IOPs and layer structure for the snow/ice/pond system, the Delta-Eddington multiple

scattering solution is evaluated for each layer. We compute the reflectivities and transmis-

sivities of the refractive boundary separately. The layer reflectivities and transmissivities

of direct and diffuse radiation are then combined between layers assuming scattered radi-

ation between layers is diffuse. In this solution, we allow for the effects of refraction in ice

and melt ponds. Once all layers are combined, up- and down-welling fluxes, reflectivities,

internal absorption and transmittance can be evaluated.

The final spectral albedos and fluxes are computed by weighting the results by the frac-

tional coverage of the surfaces types:

1 = fs + fi + fp (17)

α = αsfs + αifi + αpfp (18)

F = Fsfs + Fifi + Fpfp (19)

where fs is the horizontal coverage of snow over sea ice, fi is the horizontal coverage of bare

sea ice, fp the horizontal coverage of melt ponds (for which the ponds completely cover

underlying sea ice; see Fig. 2), α is the total albedo and αs, αi, αp albedos of snow-covered,

bare and ponded ice respectively, and Fs, Fi, Fp are the analogous fluxes. These albedos and

fluxes are computed for each thickness category and aggregated for grid-box albedos and

fluxes as in CCSM3. Table 2 summarizes the Delta-Eddington solar radiation treatment.
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Table 2. Summary of the Delta-Eddington Solar Radiation Treatment in Sea Ice

Symbol Description Units

Atmospheric Input

FSWvsdr visible band direct downwelling shortwave W m−2

FSWvsdf visible band diffuse downwelling shortwave W m−2

FSWnidr near infrared band direct downwelling shortwave W m−2

FSWnidf near infrared band diffuse downwelling shortwave W m−2

µ0 cosine solar zenith angle none

Oceanic Input

αo ocean band direct and diffuse albedos fractions (0 to 1)

Sea Ice Component Input

hs snow thickness m

ρs snow density kg m−3

rs snow grain radius m

hi sea ice thickness m

fp pond fractional horizontal coverage fraction

hp pond depth m

Inherent Optical Property (IOP) Specification

ks ωs gs snow IOPs from ρs and rs m−1, fractions

kp ωp gp pond water IOPs m−1, fractions

ki ωi gi sea ice IOPs for bare ice and under-pond ice m−1, fractions

Delta-Eddington Treatment Solution

if hs > 0.03 m, fs = 1: snow over sea ice

if hs < 0.03 m, fs = hs/0.03m: snow and sea ice

if hs = 0: bare sea ice (1 − fp) and ponded sea ice (fp)

τ optical depths from ks, kp, ki, hs, hi, hp none

layer by layer, then inter-layer multiple scattering

Apparent Optical Property (AOP) Output

αvsdr albedo (visible, direct) fraction (0 to 1)

αvsdf albedo (visible, diffuse) fraction (0 to 1)

αnidr albedo (near infrared, direct) fraction (0 to 1)

αnidf albedo (near infrared, diffuse) fraction (0 to 1)

FSWsrf shortwave absorbed at the surface W m−2

QSW shortwave absorbed in each layer W m−2

FSWo shortwave transmitted to ocean W m−2
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4. Delta-Eddington Solar Radiation Treatment: Theory

In this section, we present in detail the Delta-Eddington solar radiation treatment out-

lined in the previous section, focusing on the formal theory. Sections 4.1 through 4.4 treat

the solution band by band with fluxes normalized to unity. Refraction is treated in sec-

tion 4.1, single scattering in 4.2, multiple scattering within a layer in 4.3, and multiple

scattering between layers in 4.4. In section 4.5 the apparent optical properties (AOPs)

of albedo, absorbed and transmitted flux are presented, scaled by the surface fluxes from

the atmosphere. The inherent optical properties (IOPs) required for these calculations are

presented in section 5.

4.1 Refraction

The general Delta-Eddington formulation does not explicitly include the effects of refrac-

tion. Because refractive boundaries exist when air (index of refraction n = 1.0), snow

(n = 1.0), pond (n = 1.31) and ice (n = 1.31) layers exist in the domain, special accommoda-

tion must be made in the treatment. The penetration of light across a refractive boundary

from a medium with low n to a medium with high n (e.g. air into ice or pond) produces

three effects that must be accounted for: (1) the bending of downward propagating solar

radiation (both direct and diffuse) into the normal direction, (2) the reflection of down-

ward propagating solar radiation at the refractive boundary, and (3) the reflection and

transmission of multiply scattered upwelling radiation from below the refractive boundary.

The last effect refers to solar radiation that originally transmitted the refractive boundary

only to be backscattered into the upward hemisphere and reach the refractive boundary

from below.

Because the effects of refraction occur at the boundary between two distinct media, we

will add an extra refractive boundary layer to handle refraction effects at the appropriate

interfaces. We will refer to this refractive boundary layer as a “Fresnel layer”, to honor the

scientist who made much contribution to understanding refraction effects, and sometimes

simply as the refractive boundary; see Fig. 3. This Fresnel layer is an extra radiative layer

in addition to those required by the sea ice thermodynamics. For each type of sea ice

considered (ice with and without snow cover, and ponded ice; see Fig. 2), only one Fresnel

layer is required, as we assume only two indices of refraction (n = 1 and n = 1.31). For sea

ice with and without snow cover, the refractive boundary could be at the air/snow and sea

ice interface. However, as noted previously, snow is granular and non-refractive, and sea

ice typically has a granular and porous SSL. We therefore place the refractive boundary

between the SSL and the remainder of the top sea ice thermodynamic layer (i.e. at the

1/4, 3/4 interface- see Table 1 and Fig. 3). For ponds we place the Fresnel layer at the top

water surface.

Let us now represent the three basic effects of refraction mentioned above for the refractive

boundary, here treated as a Fresnel layer.
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The refraction of radiation at cosine zenith angle µ incident upon a medium of refractive

index n > 1 (relative to air) is given by Snell’s Law (angles are referred against the normal

to the layer, with cosine solar zenith angle µ = −1 vertically upwards and µ = +1 vertically

downwards, see Fig. 3):

µn =
√

1 − (1 − µ2)/n2 (20)

where µn is the cosine zenith angle of the refracted radiation. Eq. 20 is valid for both

direct and diffuse solar radiation. For the direct solar beam in air at cosine solar zenith

angle µ0, the cosine solar zenith angle in pond water and in sea ice below the refractive

boundary is: µ0n =
√

1 − (1 − µ2
0)/n2, where n is the index of refraction of water or sea ice

relative to air.

As will be discussed in Sections 4.3 and 4.4, each snow, pond or sea ice layer is characterized

by a reflectivity (R) and transmissivity (T) of the entire layer to direct and diffuse radiation

incident on both upper and lower layer boundaries. This characterization is also necessary

for the Fresnel layer that represents refraction. As the atmospheric component of CCSM3

treats only unpolarized solar radiation, we do so here as well. We use formulas known

as the “Fresnel formulas” for R and T for direct beam polarized radiation at a plane-

parallel refractive boundary, but combine planes of polarization equally so the expressions

are appropriate for unpolarized radiation. We assume that incident solar radiation is

unpolarized and that radiation transmitted through the refractive boundary and scattered

is also unpolarized. Thus, the reflectivity and transmissivity for unpolarized radiation from

above are (Liou, 1980):

Rf (µ) =
1

2
(R2

1 + R2
2)

Tf (µ) =
1

2
(T 2

1 + T 2
2 ) nµn/µ

(21)

where Rf (µ) + Tf (µ) = 1 (i.e. the refractive boundary is nonabsorbing), the subscript “f”

refers to the Fresnel layer, and R1,T1 and R2,T2 are reflection/transmission amplitude factors

for polarizations perpendicular (1) and parallel (2) to the plane containing the incident,

reflected and refracted beams, respectively (Liou, 1980). For incident radiation at cosine

zenith angle µ refracted into µn, the Fresnel formulas for R and T are:

R1 =
µ − nµn

µ + nµn

R2 =
nµ − µn

nµ + µn

T1 =
2µ

µ + nµn

T2 =
2µ

nµ + µn

(22)

The reflectivity and transmissivity for diffuse unpolarized radiation from above (a) can be

computed by integrating Rf (µ) in Eq. 21 for all angles in the downward hemisphere using
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the isotropic diffuse assumption:

Rfa =

∫ +1

0

µRf (µ) dµ /

∫ +1

0

µdµ

T fa =1 − Rfa

(23)

where the nonabsorbing nature of the refractive boundary is used to evaluate T fa. Note

that in reality, even atmospheric diffuse radiation has angular dependence (i.e. it is not

generally isotropic in the downward hemisphere). However, the atmospheric component

in CCSM provides only direct and diffuse fluxes, where the latter must be assumed to be

isotropic. We compute normalized fluxes in the vertical direction only, therefore requiring

the extra µ projection factor in the integrands for the R.H.S. Rfa integrals in Eq. 23.

The reflectivity for diffuse radiation from below (b) must take account of total internal

reflection. This arises since only a cone of angles, around the normal direction for upward

multiply scattered radiation below the refractive boundary, can be transmitted upward

through the boundary. In keeping with our assumption of depolarization upon scattering

below the Fresnel layer, we assume that upwelling radiation is unpolarized. We have:

µ =
√

1 − n2(1 − µ2
n)

Rfb = {
∫ −µc

−1

µnRf (µn) dµn +

∫ 0

−µc

µndµn } /

∫ 0

−1

µndµn

T fb = 1 − Rfb

µc =
√

1 − (1/n2)

(24)

where from Snell’s Law the critical cosine zenith angle for complete internal reflection is

µc, and the integrals are evaluated for the upward hemisphere.

We need to specify the index of refraction for both pond water and sea ice, noting that

in general it varies with wavelength. For pure ice at visible wavelengths (see section 5.1,

0.35−0.70µm) n ranges from 1.325 to 1.307. For ice at near-infrared wavelengths (0.70−1.19µm),

n ranges from 1.307 to 1.298. For ice in wavelengths (1.19−5.00µm), n ranges from 0.96 to 1.65

(Warren, 1984). For pure water at visible wavelengths (0.35−0.70µm), the index of refraction

ranges from 1.343 to 1.331, and for the near-infrared wavelengths (0.70−1.19µm) from 1.331 to

1.327 (Paltridge and Platt, 1976). We note that the variations of index of refraction with

wavelength between ice and water are relatively small. Therefore, we assume n = 1.31 for

all wavelengths for both pond water and sea ice. This means that we assume no refraction

effects at water-ice boundaries.

To evaluate the angular integrals in Eqs 23 and 24, we use gaussian integration, increasing

the number of angles employed until convergence (< .001 change with increasing number

of angles) is obtained. While the diffuse reflectivity from above (Eq. 23) converges quickly

for a small number of angles (32), the diffuse reflectivity from below (Eq. 24) requires
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many more (512) to resolve total internal reflection. The final values are:

Rfa = 0.063

T fa = 0.937

Rfb = 0.455

T fb = 0.545

(25)

The contrast between Rfa and Rfb occurs because light emerging from a medium of rela-

tively high n into a medium of relatively low n experiences total internal reflection. The

refractive boundary is thus much more transmissive to downward diffuse radiation from

above than it is to upward diffuse radiation from below.

4.2 Single Scattering

Snow and sea ice scatter solar radiation: in the case of snow, individual snow grains, and in

the case of sea ice, air bubble, brine pocket, precipitated salt, and inorganic/organic inclu-

sions. We assume these grains and inclusions are sufficiently separated from one another

so that each scattering event from a single scatterer can be individually characterized. We

are assuming here that both snow and sea ice above the 1/4, 3/4 interface consist of granu-

lar scatterers separated by air, while below the 1/4, 3/4 refracting boundary the scatterers

are embedded (or included) within solid sea ice, yet still separated from one another (see

Table 1). As will be discussed further in section 5.3, the solid sea ice assumed below the

1/4, 3/4 interface does not itself scatter very much, yet it contains the embedded scatterers

just mentioned. As discussed in the previous section, refraction at the 1/4, 3/4 interface

bends the direct solar beam in the solid sea ice, and affects radiation propagating across

it (both upward and downward), but the single and multiple scattering above and below

the refractive boundary can be treated similarly.

The angular pattern of single scattering is described by the scattering phase function P ,

which is the fraction of radiation incident from direction Ω̂ that is scattered into direction

Ω̂′:

P = P (Ω̂, Ω̂′) (26)

Ω̂ = (sin θ cosφ, sin θ sin φ, cos θ)

Ω̂′ = (sin θ′ cosφ′, sin θ′ sin φ′, cos θ′)

where Ω̂, Ω̂′ are the normalized direction vectors for the incoming and scattered beams,

respectively, with θ the zenith angle and φ the azimuth angle. The angles θ and φ are

measured relative to an xyz orthogonal coordinate system with the xy plane the Earth’s

horizontal plane and the z axis perpendicular towards the zenith. The zenith angle θ is

measured from the zenith (i.e. downward from the z axis) and φ from an arbitrary axial

orientation of the xy axes. The scattering phase function is normalized over all scattering

angles:
1

4π

∫

4π

dΩ′P (Ω̂, Ω̂′) = 1 (27)
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where the differential solid angle dΩ′ = sin θ′dθ′dφ′. We assume that the scattering is axially

symmetric. This does not necessarily require that scatterers are treated as equivalent

spheres, but only that on the average the scattering is axisymmetric. Hence:

P (Ω̂, Ω̂′) = P (Ω̂ · Ω̂′) = P (Θ) (28)

where Ω̂ · Ω̂′ = cosΘ and Θ is the scattering angle measured from the incident direction. The

normalization condition for the axially symmetric scattering phase function becomes:

1

2

∫ +1

−1

d(cosΘ)P (cosΘ) = 1 (29)

where positive Θ refers to forward scattering, negative to backward scattering. Any axially

symmetric scattering phase function can be written as a series of Legendre polynomials as:

P (cosΘ) = Σ∞
l=0ωlPl(cosΘ) (30)

where Pl(cosΘ) is the lth Legendre polynomial, normalized so that:

∫ +1

−1

Pl(cosΘ)Pm(cosΘ) d(cosΘ) =
2

2l + 1
δlm (31)

It is very useful to characterize single scattering by its asymmetry (forward vs. backward)

and by the amount scattered into the forward direction. Two lowest moments of the

scattering phase function allow such characterization:

g =
1

2

∫ +1

−1

P1(cosΘ)P (cosΘ) d(cosΘ)

f =
1

2

∫ +1

−1

P2(cosΘ)P (cosΘ) d(cosΘ)

(32)

where g is the asymmetry parameter, f is the forward scattered fraction, with P1(cosΘ) =

cosΘ and P2(cosΘ) = (1/2)(3[cosΘ]2 − 1). For example, if the scattering is isotropic (i.e. equal

probability in all directions), then P (cosΘ) = 1 which means g = f = 0, so there is uniform

symmetry to the scattering (g = 0) and no preference for forward scattering (f = 0).

Many realistic scattering phase functions are strongly forward peaked, as scattering parti-

cles are usually much larger than typical solar radiation wavelengths. For instance, Light

et al. (2003a) report air bubble radii from 4µm to 2000µm, salt crystals 10µm, and equiv-

alent spherical radii for brine inclusions of 5 to 150µm, all well above the 0.2µm to 5.0µm

wavelengths of scattering solar radiation, while in snow Wiscombe and Warren (1980) use

grain radii from 5µm to 2500µm. An axially symmetric function that can empirically repre-

sent many such scattering phase functions is the Henyey-Greenstein function (Henyey and

Greenstein, 1941):

PHG(cosΘ) =
1 − g2

HG

(1 + g2
HG − 2gHG cosΘ)

3

2

(33)

18



where gHG < 1 is the asymmetry parameter indicating the amount of forward scattering,

which ranges from greater than −1 (completely backward) to less than +1 (completely

forward). We can see this from the Legendre polynomial expansion of Eq. 33:

PHG(cosΘ) = Σ∞
l=0(2l + 1)gl

HGPl(cosΘ) (34)

Using Eqs. 31, 32 and 34, we can show that g = gHG and f = g2
HG. We will not explicitly

use the Henyey-Greenstein phase function, other than to note that it represents realistic

scattering phase functions specified by the asymmetry parameter and that its forward

scattering fraction is the square of the asymmetry parameter.

In the Eddington approximation for multiple scattering (see the following section), one

truncates the scattering phase function (Eq. 34) at its first moment:

P (cosΘ) ≈ 1 + 3g∗ cosΘ (35)

where P1(cosΘ) = cosΘ, and g∗ is yet to be related to the asymmetry parameter g. However,

such a smooth scattering phase function cannot represent the strong forward peak in

realistic scattering. If the strong forward peak is represented by a δ-function, then one can

form a modified phase function by including the forward scattering fraction f as in:

P (cosΘ) = afδ(1 − cosΘ) + b(1 − f)(1 + 3g∗ cosΘ) (36)

so that any radiation not forward scattered as represented by the δ function is smoothly

scattered as represented by the truncated series, where a, b are normalization constants.

From normalization (Eq. 29) one can show that a = 2 and b = 1, and by direct calculation

(Eq. 32) the asymmetry parameter is:

g = f + (1 − f)g∗

so that:

g∗ =
g − f

1− f
(37)

We are assuming horizontal uniformity in the snow, sea ice and pond surfaces, and are in-

terested in radiant energy flows perpendicular to these surfaces. Since we are also assuming

axial symmetry in single scattering, then only the azimuthal average of intensity (see next

section) needs to be calculated. Therefore, we compute the azimuthal average about the z

axis of the scattering phase function Eq. 36. To do so, we express the scattering angle Θ in

terms of the angles θ and φ by using δ(1−cosΘ) = 2πδ(µ−µ′)δ(φ−φ′) and the expansion of Ω̂ ·Ω̂′

in terms of (µ,φ),(µ′,φ′) (e.g. Eqs 26, 28). This results in the Delta-Eddington azimuthally

averaged scattering phase function PδE(µ):

PδE(µ) =
1

2π

∫ 2π

0

dφ′P (µ, φ; µ′, φ′) =
1

2π

∫ 2π

0

dφ′[2f(2πδ(µ − µ′)δ(φ − φ′))

+(1 − f)(1 + 3g∗(µµ′ +
√

1 − µ2
√

1 − µ′2cos(φ′ − φ)))]
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PδE(µ) = 2fδ(µ − µ′) + (1 − f)(1 + 3g∗µµ′) (38)

where δE refers to “Delta-Eddington”. This scattering phase function will be used to

calculate multiple scattering within a layer as presented in the next section.

4.3 Multiple Scattering Within a Layer

Variations in snow, sea ice and melt pond properties, that determine the transfer of solar

radiation, occur both vertically and horizontally. The most important variations are ver-

tical, as snow and ice form stratified layers approximately parallel to the ocean surface.

Horizontal variations are most important for patchy snow, for melt ponds and for ridged

sea ice. Typical radiance attenuation coefficients resulting from multiple scattering (which

characterize the variation of in-snow/sea ice mean intensity) are order 1 to 2 m−1 (see sec-

tions 5 and 6), which implies radiance variations over a meter or so both vertically and

horizontally. When significant scattering occurs, radiation can propagate horizontally by

several meters, and so edge effects can potentially be important for patchy snow and melt

ponds. Such lateral spreading can also smooth out horizontal variations in scattering from

inhomogeneities in sea ice. In any case, we assume horizontal homogeneity and explicitly

solve only for vertical variations in IOPs. We represent vertical variations in the sea ice

column by a series of layers, each of which is assumed to be vertically homogeneous (see

Figs. 1 and 2).

Our approach to the multiple scattering problem is to separate the layer multiple scat-

tering solution from the inter-layer scattering. In other words, assuming horizontal and

vertical homogeneity within each layer, and given the IOPs necessary to define the single

scattering properties, then the entire single layer multiple scattering problem can be eval-

uated explicitly using the Delta-Eddington approximation. We then combine each layer

solution to allow for multiple scattering between layers. In this section, we treat multiple

scattering within a single layer, while in the next section we describe inter-layer scattering.

We consider each layer to be both absorbing and scattering. We specify the absorbing and

scattering properties of each layer in terms of an absorption coefficient κ and a scattering

coefficient σ, whose sum is the extinction coefficient k = κ+σ. The single scattering albedo is

the ratio of scattering to extinction, or ω = σ/(κ + σ), and the degree of forward/backward

single scattering is given by the asymmetry parameter g (see the previous subsection).

These last three properties (k, ω, g) are the inherent optical properties (IOPs) of the layer.

The specification of snow, sea ice and pond water IOPs is presented in section 5.

The radiative transfer equation for the plane-parallel, horizontally homogeneous scattering

and absorbing layer is:

µ
dI

dτ
+ I =

ω

4π

∫

4π

dΩ′P (Ω, Ω′)I(Ω′, τ) (39)

with extinction optical depth of τ = 0 at the layer upper boundary and τ = τ0 at the lower

layer boundary, with τ0 = kz, k is the extinction coefficient and z is the layer thickness,
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µ = cosθ defined as positive for downward directed radiation and negative for upward

directed radiation, I the intensity (or radiance), ω the single particle scattering albedo

(0 ≤ ω < 1), P the scattering phase function, and Ω the solid angle defined by the normalized

direction vector. The intensity I represents the radiant energy per unit cross sectional

area, per unit solid angle, and per unit time in a particular location and direction for

each wavelength band. The radiative transfer equation (Eq. 39) states that variations in

intensity (or radiance) in a direction µ at optical depth τ follow from losses due to extinction

(the L.H.S.), and from gains due to multiply scattered radiation into the direction µ (the

R.H.S.). It is simply a statement of energy conservation.

The intensity in Eq. 39 is a function of both angles θ and φ, but it is only the θ dependence

that contributes to the flow of radiant energy perpendicular to the Earth’s surface (see

Eqs. 49 and A2). Therefore we take the azimuthal average of the transfer equation (Eq.

39) and denote the azimuthal average of the intensity I(µ, τ):

µ
dI(µ, τ)

dτ
+ I(µ, τ) =

ω

2

∫

4π

dµ′{ 1

2π

∫ 2π

0

P (Ω, Ω′)dφ′}I(µ′, τ) (40)

Substituting the azimuthally averaged Delta-Eddington phase function (Eq. 38) of the

previous section for the bracketed term and rearranging:

µ
dI

dτ
+ I =

ω

2

∫ +1

−1

dµ′{PδE(µ)}I(µ′, τ)

µ
dI

dτ
+ I =

ω

2

∫ +1

−1

dµ′{2fδ(µ − µ′) + (1 − f)(1 + 3g∗µµ′)}I(µ′, τ)

µ
dI

dτ
+ I = ωfI +

ω(1 − f)

2

∫ +1

−1

dµ′(1 + 3g∗µµ′)I(µ′, τ)

µ
1

1 − ωf

dI

dτ
+ I =

ω(1 − f)

2(1 − ωf)

∫ +1

−1

dµ′(1 + 3g∗µµ′)I(µ′, τ)

(41)

Defining the scaled optical properties:

τ∗ = (1 − ωf)τ

ω∗ =
(1 − f)ω

1 − ωf

g∗ =
g − f

1 − f

(42)

along with:

f = g2 (43)

then allows us to write a scaled radiative transfer equation:

µ
dI

dτ∗
+ I =

ω∗

2

∫ +1

−1

dµ′(1 + 3g∗µµ′)I(µ′, τ∗) (44)

Thus, we have removed the forward scattering peak by scaling the transfer equation to

a more soluble one. In effect, we have replaced the original transfer equation (Eq. 39)
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with a scaled transfer equation (Eq. 44) that has less optical depth (τ ∗ < τ), less forward

scattering (g∗ = g−f
1−f = g

1+g < g), but the same layer absorption (τ ∗(1 − ω∗) = τ(1 − ω)). Given

the original extinction optical depth τ , single scattering albedo ω, asymmetry parameter

g and forward scattering fraction f = g2, we can define the scaled optical properties and

associated scaled transfer equation.

A common technique in radiative transfer is to distinguish the direct solar beam from

multiply scattered radiation, and embed the former directly into the transfer equation as a

source term. Since we know the solar beam direction and that it is extinguished according

to Beer’s law through the layer, we then express the intensity as I ⇒ I + Is, with the diffuse

(i.e. multiply scattered) intensity I and the direct beam solar intensity Is, the latter given

by:

Is =
1

2
F0 δ(µ − µ0n) e−τ∗/µ0n , µ0n > µc (45)

where πF0 is the solar flux in the beam direction, µ0n is the solar beam direction in the

media of index of refraction n ≥ 1, and µc is the critical cosine solar zenith angle for complete

internal reflection. Eq. 45 is applicable for both air above the sea ice system, as well as

within snow and sea ice SSL and the solid sea ice below the refractive boundary. In the

former, n = 1, µ0n = µ0, the cosine solar zenith angle in the atmosphere and surface above

the refractive boundary, and µc = 0, while in the latter n = 1.31, µ0n is the cosine solar zenith

angle of the direct beam below the refractive boundary, given by Eq. 20, and µc is given

by Eq. 24. The downward flux Fs of solar radiation is thus:

Fs = 2π

∫ +1

0

µIsdµ = 2π(
1

2
F0)

∫ +1

0

µ δ(µ − µ0n) e−τ∗/µ0ndµ = πF0µ0n e−τ∗/µ0n (46)

Separating the direct solar beam from the diffuse intensity (I ⇒ I + Is), and using Eq. 45

for Is, Eq. 44 becomes:

µ
dI

dτ∗
+ I =

ω∗

2

∫ +1

−1

(1 + 3g∗µµ′)I dµ′ +
ω∗F0

4
(1 + 3g∗µ0nµ) e−τ∗/µ0n (47)

where the direct beam solar now appears as a single scattered source for diffuse radiation

(second term R.H.S. of Eq. 47). We note in passing that if we were solving the entire

column radiative transfer equation across the refractive boundary, it would be necessary

to include a factor µ0/µ0n in the solar beam source term for energy conservation. However,

as we are only solving the transfer equation layer by layer, we need only account for the

change in solar beam direction and transmission through the refractive boundary to insure

energy is conserved.

Now we invoke the Eddington approximation: I = I0 + µI1, where I0 is the mean intensity:

I0 =
1

4π

∫

4π

I dΩ =
1

2

∫ +1

−1

I(µ) dµ (48)

and I1/3 is the mean flux:

I1/3 =
1

4π

∫

4π

µI dΩ =
1

2

∫ +1

−1

µI(µ) dµ (49)
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The Eddington approximation is accurate only when the radiation field due to multiple

scattering is very diffuse (i.e. the second R.H.S. term of Eq. 47 is small and layer optical

depth τ0 >> 1), or when little multiple scattering occurs (i.e. τ0 << 1), and the first R.H.S.

term of Eq. 47 is small compared to the second R.H.S. term.

We briefly outline the solution to the transfer equation (Eq. 47); for further details,

see Appendix A. We substitute the Eddington approximation into the radiative transfer

equation and take moments
∫ +1

−1
dµ,

∫ +1

−1
µdµ which yields two first order coupled differential

equations for the mean intensity and mean flux (Eqs. 48 and 49). We then take optical

depth derivative of each equation to eliminate the first derivative terms, yielding two second

order inhomogeneous differential equations; F0 = 0 yields the homogeneous differential

equations. General solutions to both homogeneous and inhomogeneous equations can then

be written down, with constants determined from the boundary conditions. Differences

and sums of the mean intensity and mean flux yield the up flux (upward hemisphere) and

down flux (downward hemisphere), respectively, which allow the boundary conditions to

be set for the case of direct solar beam and no diffuse flux. Finally, the layer reflectivity

and transmissivity for both direct incident radiation and diffusely incident radiation can

be evaluated, which completes the solution.

We summarize the solution as follows. For direct radiation at cosine zenith angle µ0n

incident on a layer of thickness z and inherent optical properties of absorption coefficient κ,

scattering coefficient σ, and single particle scattering asymmetry parameter g, the solution
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equations (following the notation of Coakley et. al 1983) are given by:

k = κ + σ

ω = σ/(κ + σ)

f = g2

τ = kz

τ∗ = (1 − ωf)τ

ω∗ =
(1 − f)ω

1 − ωf

g∗ =
g − f

1− f

λ =
√

3(1 − ω∗)(1 − ω∗g∗)

α =
3

4
ω∗µ0n

(

1 + g∗(1 − ω∗)

1 − λ2µ2
0n

)

γ =
1

2
ω∗

(

1 + 3g∗(1 − ω∗)µ2
0n

1 − λ2µ2
0n

)

u =
3

2

(

1 − ω∗g∗

λ

)

N = (u + 1)2eλτ∗ − (u − 1)2e−λτ∗

R(µ0n) = (α − γ)(4u/N)e−τ∗

0
/µ0n + (α + γ)(u + 1)(u − 1)

[

e+λτ∗

0 − e−λτ∗

0

]

/N − (α − γ)

T (µ0n) = (α + γ)(4u/N) + (α − γ)

[

(u + 1)(u − 1)(e+λτ∗

0 − e−λτ∗

0 )

N

]

e−τ∗

0
/µ0n

− (α + γ − 1)e−τ∗

0
/µ0n

R = 2

∫ +1

0

µR(µ) dµ

T = 2

∫ +1

0

µT (µ) dµ

(50)

where R(µ0n), T (µ0n) are the layer reflectivity and transmissivity to direct radiation respec-

tively, and R, T are the layer reflectivity and transmissivity to diffuse radiation respectively.

Note that these reflectivities and transmissivities account for multiple scattering within the

layer. We use an explicit integration of R(µ) and T (µ), rather than closed form expressions

for R and T , as the closed form expression for R in particular can sometimes be negative;

see Appendix A for more discussion and a table of angles and weights for the angular

integration.

How accurate is the Delta-Eddington solution compared to more accurate radiative trans-

fer solutions? In general, for optically thin layers where single scattering dominates, the

reflectivities and transmissivities are quite accurate (typical errors < .01). For the interme-

diate regime of low order scattering, errors can be somewhat larger (order .01− .02). For the

asymptotic regime of a large number of scatterings, the errors become order .01 again (see

Briegleb 1992). From the IOP data of section 5, we note that for snow depth more than a

few cm thickness and for the ice SSL, visible optical depths (τ ∗) are generally greater than
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five, and therefore close to the asymptotic regime. For ice interior, the layer scattering is

in the low order regime (τ∗ ≈ 1). See section 6 for example calculations consistent with

these general error estimates.

4.4 Multiple Scattering Between Layers

Once multiple scattering for each layer has been computed (Eqs. 50), multiple scattering

between layers must be evaluated. We call the evaluation of inter-layer scattering the

combining of layers. Hence, given a column of individual layer AOPs [R(µ) T (µ) R T ],

representing the layer solutions (Eqs. 50), we combine layers to complete the full multiple

scattering solution.

To combine layers, we consider only diffuse radiation resulting from multiple scattering

within each layer (Eqs. 50, R and T). In other words, we account for diffuse inter-layer

scattering only. This approximation of diffuse inter-layer scattering is not very accurate

through the refractive boundary, reasonably accurate for optically thick snow and sea

ice surface layers, but less accurate for deeper ice layers and ponds. We note also that

apart from the Fresnel layer, all layers are homogeneous, meaning that the reflectivity and

transmissivity formulas in Eqs. 50 are the same for radiation incident from above and

from below the layer. That is no longer the case when layers are combined, so care must

be taken to keep the directions consistent.

For an arbitrary homogeneous layer 1 with AOPs [R1(µ) T1(µ) R1 T 1] overlying homogeneous

layer 2 with AOPs [R2(µ) T2(µ) R2 T 2], the combination formulas for direct and diffuse

radiation incident from above are:

R12(µ) = R1(µ) +
{(T1(µ) − Tdrs)R2 + TdrsR2(µ)}T 1

1 − R1R2

T12(µ) = TdrsT2(µ) +
{(T1(µ) − Tdrs) + TdrsR2(µ)R1}T 2

1 − R1R2

R12 = R1 +
T 1R2T 1

1− R1R2

T 12 =
T 1T 2

1 − R1R2

(51)

with Tdrs = e−τ∗

1
/µ the direct solar beam transmission through layer 1, and the cosine solar

zenith angle µ is µ0 above the refractive boundary and µ0n below the refractive boundary.

The transmissions for each layer [T1(µ0) T2(µ0)] and for the combined layers [T12(µ0)] are

total transmissions, containing both direct and diffuse transmission.

To combine the layers over the entire column, two vertical passes are made, one starting

from the top and proceeding downward, the other starting from the specified ocean sur-

face reflectivities at the sea ice/ocean interface and proceeding upward. The result is that

for every interface, the following combined reflectivities and transmissivities are available:

Fdrs, the direct beam flux transmission from the top to the interface, Rup(µ), the reflectivity
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to direct solar radiation of the entire column below the interface, Tdn(µ), the total trans-

mission to direct solar radiation incident from the top to the interface, Rup, the reflectivity

of the column below the interface to diffuse radiation from above, Rdn, the reflectivity of

the column above the interface to diffuse radiation from below, and T dn, the transmissivity

to diffuse radiation from the top to the interface. With these quantities, the upward and

downward fluxes at every interface can be computed. The resulting expressions for the

downward and upward fluxes are:

Fdrdn = Fdrs +
(Tdn(µ) − Fdrs) + FdrsRup(µ)Rdn

1 − RdnRup

Fdrup =
FdrsRup(µ) + (Tdn(µ) − Fdrs)Rup

1 − RdnRup

Fdfdn =
T dn

1 − RdnRup

Fdfup =
T dnRup

1 − RdnRup

(52)

where Fdrs is the solar beam flux that transmits from the top to the interface, and again the

cosine solar zenith angle µ is µ0 above the refractive boundary and µ0n below the refractive

boundary.

A complete discussion of assumptions and derivation of combination formulas for multiple

scattering between layers is given in Appendix B.

4.5 Apparent Optical Properties: Albedo, Absorbed and Transmitted Flux

Given the multiple scattering solutions within and between layers presented in the previous

two subsections, the apparent optical properties (AOPs) of albedo, absorbed and trans-

mitted flux can be evaluated. The Delta-Eddington theory of the past several sections has

suppressed any explicit reference to spectral band. In this subsection we make explicit the

visible (vs) and near-infrared (ni) spectral bands for the albedos and fluxes. Finally, the

fluxes presented in Eqs. 52 are normalized to unity, whereas here we scale these normalized

fluxes by the solar radiation fluxes incident from above.

The surface albedos for direct and diffuse radiation are given by the band reflectivities

Rup(µ0), Rup at the top interface:

αvsdr = Rvsup(µ0, top)

αvsdf = Rvsup(top)

αnidr = Rniup(µ0, top)

αnidf = Rniup(top)

(53)

where we have added the spectral vs and ni to the reflectivities (see section 5.1), up refers

to reflectivities at the surface for solar radiation from above, and where top is the surface

of snow, bare sea ice or pond. Thus, the spectral band and total column absorption can
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be evaluated as in Eqs. 10-12:

FSWvs = FSWvsdr(1 − αvsdr) + FSWvsdf (1 − αvsdf ) (54)

FSWni = FSWnidr(1 − αnidr) + FSWnidf (1 − αnidf ) (55)

FSW = FSWvs + FSWni (56)

The visible and near-infrared surface absorption are:

FSWvs−srf ={Fdrvsdn(top) − Fdrvsup(top)}FSWvsdr + {Fdfvsdn(top) − Fdfvsup(top)}FSWvsdf

−{Fdrvsdn(bot) − Fdrvsup(bot)}FSWvsdr + {Fdfvsdn(bot) − Fdfvsup(bot)}FSWvsdf

(57)

FSWni−srf ={Fdrnidn(top) − Fdrniup(top)}FSWnidr + {Fdfnidn(top) − Fdfniup(top)}FSWnidf

−{Fdrnidn(bot) − Fdrniup(bot)}FSWnidr + {Fdfnidn(bot) − Fdfniup(bot)}FSWnidf

(58)

where we have added the spectral vs and ni to the up/down direct and diffuse fluxes of

Eqs. 52, top is the pond surface (if present) as for the albedos above, and for snow and

bare sea ice top is the top of the SSL, while bot is always the bottom of the SSL (see Table

1).

The portions of absorbed flux that penetrate the SSL (Eqs. 13 and 14) are:

I0vs =FSWvs − FSWvs−srf

I0ni =FSWni − FSWni−srf

(59)

The INT ice flux divergences (Eq. 15) are similar to those for the SSL, except top is the

layer top interface, and bot is the layer bottom interface:

QSWvs ={Fdrvsdn(top) − Fdrvsup(top)}FSWvsdr + {Fdfvsdn(top) − Fdfvsup(top)}FSWvsdf

−{Fdrvsdn(bot) − Fdrvsup(bot)}FSWvsdr + {Fdfvsdn(bot) − Fdfvsup(bot)}FSWvsdf

(60)

QSWni ={Fdrnidn(top) − Fdrniup(top)}FSWnidr + {Fdfnidn(top) − Fdfniup(top)}FSWnidf

−{Fdrnidn(bot) − Fdrniup(bot)}FSWnidr + {Fdfnidn(bot) − Fdfniup(bot)}FSWnidf

(61)

QSW = QSWvs + QSWni (62)

Note that for the layer immediately under the SSL (see Table 1), the top of that layer for

the flux divergence calculation is the SSL/INT interface for snow and the SSL/DL interface

for sea ice, as the flux absorbed above that interface is included in the surface absorption.

The spectral fluxes absorbed in the underlying ocean are:

QSWvs−ocn = {Fdrvsdn(ocn) − Fdrvsup(ocn)}FSWvsdr + {Fdfvsdn(ocn) − Fdfvsup(ocn)}FSWvsdf (63)

QSWni−ocn = {Fdrnidn(ocn) − Fdrniup(ocn)}FSWnidr + {Fdfnidn(ocn) − Fdfniup(ocn)}FSWnidf (64)

QSWocn = QSWvs−ocn + QSWni−ocn (65)

where ocn refers to the ocean/sea ice interface.
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5. Delta-Eddington Solar Radiation Treatment: Data

In this section, we present the inherent optical properties (IOPs) for snow, bare sea ice and

ponded ice that are required by the Delta-Eddington solar radiation treatment. For snow

IOPs we follow Wiscombe and Warren (1980). For bare and ponded ice, IOPs were inferred

from matching SHEBA spectral albedo data with an empirical/optical model (Light et al.

2003a, Light et al. 2004).

In section 5.1 following, we present the Delta-Eddington solar radiation spectral bands. In

the next two sections 5.2 and 5.3, we present the IOP data for snow and sea ice respectively.

5.1 Spectral Bands

As noted in section 2 (Eq. 1), the boundary radiative fluxes from the atmosphere to

sea ice in CCSM distinguish visible (wavelengths < 0.7µm) from near-infrared (wavelengths

> 0.7µm). This spectral distinction separates the less absorbing from more absorbing regions

of many atmospheric and surface constituents. In the atmospheric component the generally

increasing absorption for wavelengths greater than 0.7µm is accounted for, though only the

total near-infrared fluxes are available to the sea ice (Eq. 1; Collins et al., 2004). Sea

ice absorption also generally increases for near-infrared wavelengths, so using integrated

optical properties for the entire near-infrared band tends to weight the greater absorption.

Such weighting masks the more transmissive near-infrared regions.

Therefore, we divide the near-infrared band into two sub-bands: 0.7−1.19µm and 1.19−5.0µm,

with flux weights based on radiative model calculations with cloudy polar atmospheres (Ap-

pendix C). The wavelength boundary 1.19µm is chosen to be compatible with atmosphere

(Collins et al., 2004) and snow/ice albedo calculations (Ebert and Curry 1993, Curry et

al., 2001). Using the atmospheric profile from Table C in Appendix C (with an overcast

low stratus cloud), for bare sea ice, resulted in 78% of the 0.7 − 5.00µm down near-ir flux

from the atmosphere in the 0.7 − 1.19µm sub-band, and 67% for clear sky. This change is

due to differences in clear sky and overcast sky absorption: clouds absorb more of the

1.19 − 5.0µm sub-band relative to the 0.7 − 1.19µm sub-band, compared to clear sky condi-

tions. We linearly interpolate between these extremes based on the fraction of direct to

total near-infrared flux (i.e. FSWnidr/(FSWnidr + FSWnidf ); see Eq. 1).

5.2 Inherent Optical Properties: Snow

A. Pure Snow

Evaluation of IOPs for pure snow follows Wiscombe and Warren (1980), who modeled

snow as ice spheres resulting in snow pack albedos (computed with the Delta-Eddington

method) that agree well with spectral observations. As noted in section 3, this approach has

been supported by recent work summarized in Flanner and Zender (2006). Mie scattering

quantities of extinction efficiency, asymmetry parameter and single scattering albedo are

available for ice spheres from 5 to 2500 µm radius over the spectral range of 300 to 3000 nm
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(Steve Warren, personal communication). We spectrally interpolate these data linearly

to 1 nm resolution for the range 300 to 2500 nm. For the purpose of incident weightings,

we used observed downward surface solar spectral irradiance data for a mostly clear polar

sky (Don Perovich, personal communication), from 350 to 2500 nm at 1 nm resolution. We

assume a linear decrease in irradiance from 350 nm to zero at 304 nm, and zero irradiance

for wavelengths longer than 2500 nm.

To evaluate IOPs averaged over our spectral bands (i.e. band IOPs), we take the following

approach. Let κλ, ωλ, gλ represent the 1 nm Mie IOP data, and let αλ(κλ, ωλ, gλ) represent

the 1 nm snow albedos for an optically thick layer with incident beam at µ=0.5. We

calculate the true band albedo, computed with the Delta-Eddington approximation, using

ᾱ =
∫ λ2

λ1

αλSλdλ, where Sλ is the normalized solar irradiance over the band λ1 to λ2 (Table 3

and Fig. 4). We calculate band IOPs as k =
∫ λ2

λ1

κλSλdλ, ω =
∫ λ2

λ1

ωλSλdλ, g =
∫ λ2

λ1

gλSλdλ. We

calculate a band albedo based on the band IOPs as α(κ, ω, g); but in general α < ᾱ. Thus, we

increase ω to ω′ until |α(k, ω′, g) − ᾱ| < .0001. The band extinction efficiency Q =
∫ λ2

λ1

QλSλdλ,

k, ω′, and g are shown in Tables 4 through 7 respectively. There are other approaches

that one could take to determining band means (Mark Flanner, personal communication),

but this seems to be a straightforward method, as single scattering albedo varies strongly

across the bands compared with the extinction efficiency and the asymmetry parameter

(see Wiscombe and Warren, 1980). In section 6.1 we discuss some limitations of this

method.

We compute band snow extinction coefficient ks for snow grain radius rs(m) and number

density Ns(m−3) from:

ks(rs) = Qs(rs) Ns πr2
s (66)

where Qs(rs) is the band solar weighted extinction efficiency. The number density Ns of

snow grains is calculated from the snow density ρs:

ρs = Ns(ρi
4

3
πr3

s) or Ns =
ρs

ρi

3

4πr3
s

(67)

where ρi is pure ice density. We use ρs = 330 kg m−3 and ρi = 917 kg m−3 from CCSM3

(Briegleb et al., 2004). Using the expression for number density Ns, the band extinction

coefficient can be expressed as:

ks(r
′
s) = Qs(r

′
s)

ρs

ρi

3

4r′s

r′s = frrs

(68)

showing that snow extinction to first order varies inversely with grain radius as the extinc-

tion efficiency is a weak function of snow grain radius and wavelength, and where we have

included an adjustment factor fr as discussed in section 6.1 (the other IOPs ω(r′s) and g(r′s)

are evaluated at r′s also). Note that in snow models with varying ρs and rs, Eq. 68 can

be used to compute varying extinction coefficient. Band parameters are shown in Tables

4 through 7. For snow grain radii rs other than those in these tables, Qs, ωs and gs can be

linearly interpolated between table entries.
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Table 3. Snow Albedo ᾱ =
∫ λ2

λ1

αλSλdλ (see text), for snow grain radii rs and incident beam

µ = 0.5. Broadband and 0.7−5.0µm albedos computed with spectral cloudy-sky weights 0.67,

0.2574 and 0.0726 for 0.2− 0.7µm, 0.7 − 1.19µm and 1.19− 5.0µm bands respectively.

rs(µm) 0.2 − 0.7µm 0.7− 1.19µm 1.19− 5.0µm 0.70− 5.0µm broadband

5 0.995880 0.970839 0.725607 0.916888 0.969813

7 0.995161 0.964587 0.670421 0.899870 0.963715

10 0.994228 0.957411 0.617852 0.882708 0.957426

15 0.992844 0.948032 0.559041 0.862454 0.949815

20 0.991594 0.939454 0.518557 0.846857 0.943831

30 0.989708 0.926181 0.459038 0.823410 0.934830

40 0.988128 0.915255 0.417838 0.805823 0.927967

50 0.986741 0.905816 0.386818 0.791636 0.922356

65 0.984905 0.893542 0.351500 0.774293 0.915403

80 0.983278 0.882856 0.324554 0.760030 0.909606

100 0.981336 0.870346 0.296671 0.744138 0.903060

120 0.979585 0.859289 0.274754 0.730691 0.897450

140 0.977980 0.849327 0.256847 0.718981 0.892510

170 0.975780 0.835942 0.235124 0.703762 0.886014

200 0.973773 0.823996 0.217666 0.690603 0.880327

240 0.971327 0.809763 0.198870 0.675367 0.873660

290 0.968549 0.794039 0.180271 0.659010 0.866401

350 0.965530 0.777429 0.162715 0.642192 0.858828

420 0.962331 0.760376 0.146599 0.625345 0.851126

500 0.959001 0.743191 0.132039 0.608738 0.843414

570 0.956312 0.729716 0.121658 0.595943 0.837390

660 0.953099 0.714071 0.110616 0.581311 0.830409

760 0.949791 0.698460 0.100577 0.566926 0.823445

870 0.946410 0.683003 0.091500 0.552872 0.816543

1000 0.942698 0.666581 0.082709 0.538129 0.809190

1100 0.940014 0.655062 0.077018 0.527892 0.804014

1250 0.936225 0.639270 0.069806 0.513988 0.796887

1400 0.932675 0.624957 0.063812 0.501505 0.790389

1600 0.928250 0.607734 0.057226 0.486622 0.782513

1800 0.924119 0.592244 0.051840 0.473355 0.775367

2000 0.920231 0.578169 0.047354 0.461390 0.768813

2500 0.911368 0.547751 0.038858 0.435795 0.754429
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Table 4. Snow extinction efficiencies Qs =
∫ λ2

λ1

QλSλdλ (see text), for snow grain radii rs.

rs(µm) 0.2 − 0.7µm 0.7− 1.19µm 1.19− 5.0µm

5 2.131798 2.187756 2.267358

7 2.104499 2.148345 2.236078

10 2.081580 2.116885 2.175067

15 2.062595 2.088937 2.130242

20 2.051403 2.072422 2.106610

30 2.039223 2.055389 2.080586

40 2.032383 2.045751 2.066394

50 2.027920 2.039388 2.057224

65 2.023444 2.033137 2.048055

80 2.020412 2.028840 2.041874

100 2.017608 2.024863 2.036046

120 2.015592 2.022021 2.031954

140 2.014083 2.019887 2.028853

170 2.012368 2.017471 2.025353

200 2.011092 2.015675 2.022759

240 2.009837 2.013897 2.020168

290 2.008668 2.012252 2.017781

350 2.007627 2.010813 2.015678

420 2.006764 2.009577 2.013880

500 2.006037 2.008520 2.012382

570 2.005528 2.007807 2.011307

660 2.005025 2.007079 2.010280

760 2.004562 2.006440 2.009333

870 2.004155 2.005898 2.008523

1000 2.003794 2.005379 2.007795

1100 2.003555 2.005041 2.007329

1250 2.003264 2.004624 2.006729

1400 2.003037 2.004291 2.006230

1600 2.002776 2.003929 2.005700

1800 2.002590 2.003627 2.005276

2000 2.002395 2.003391 2.004904

2500 2.002071 2.002922 2.004241
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Table 5. Snow extinction coefficients ks =
∫ λ2

λ1

kλSλdλ (see text), m−1, for snow density 330

kg m−3 and snow grain radii rs.

rs(µm) 0.2 − 0.7µm 0.7− 1.19µm 1.19− 5.0µm

5 115075.26 118095.87 122392.85

7 81144.01 82834.61 86217.37

10 56182.24 57135.11 58705.45

15 37113.21 37587.19 38330.41

20 27683.87 27967.53 28428.90

30 18346.33 18491.77 18718.47

40 13713.60 13803.80 13943.09

50 10946.79 11008.69 11104.97

65 8402.02 8442.27 8504.21

80 6816.41 6844.84 6888.82

100 5445.56 5465.14 5495.33

120 4533.43 4547.89 4570.24

140 3882.89 3894.08 3911.37

170 3194.95 3203.05 3215.57

200 2713.99 2720.17 2729.73

240 2260.24 2264.81 2271.86

290 1869.46 1872.80 1877.94

350 1548.18 1550.63 1554.39

420 1289.59 1291.40 1294.17

500 1082.87 1084.21 1086.29

570 949.64 950.72 952.38

660 819.94 820.78 822.09

760 711.89 712.55 713.58

870 621.75 622.29 623.11

1000 540.83 541.26 541.91

1100 491.60 491.97 492.53

1250 432.55 432.84 433.30

1400 386.16 386.40 386.78

1600 337.85 338.04 338.34

1800 300.28 300.43 300.68

2000 270.23 270.36 270.56

2500 216.15 216.24 216.38
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Table 6. Snow single scattering albedo ω′ (see text), for snow grain radii rs.

rs(µm) 0.2 − 0.7µm 0.7− 1.19µm 1.19− 5.0µm

5 0.9999994 0.9999673 0.9954589

7 0.9999992 0.9999547 0.9938576

10 0.9999990 0.9999382 0.9917989

15 0.9999985 0.9999123 0.9889724

20 0.9999979 0.9998844 0.9866190

30 0.9999970 0.9998317 0.9823021

40 0.9999960 0.9997800 0.9785269

50 0.9999951 0.9997288 0.9751601

65 0.9999936 0.9996531 0.9706974

80 0.9999922 0.9995783 0.9667577

100 0.9999903 0.9994798 0.9621007

120 0.9999885 0.9993825 0.9579541

140 0.9999866 0.9992862 0.9541924

170 0.9999838 0.9991434 0.9490959

200 0.9999810 0.9990025 0.9444940

240 0.9999772 0.9988171 0.9389141

290 0.9999726 0.9985890 0.9325819

350 0.9999670 0.9983199 0.9256405

420 0.9999605 0.9980117 0.9181533

500 0.9999530 0.9976663 0.9101540

570 0.9999465 0.9973693 0.9035031

660 0.9999382 0.9969939 0.8953134

760 0.9999289 0.9965848 0.8865789

870 0.9999188 0.9961434 0.8773350

1000 0.9999068 0.9956323 0.8668233

1100 0.9998975 0.9952464 0.8589990

1250 0.9998837 0.9946782 0.8476493

1400 0.9998699 0.9941218 0.8367318

1600 0.9998515 0.9933966 0.8227881

1800 0.9998332 0.9926888 0.8095131

2000 0.9998148 0.9919968 0.7968620

2500 0.9997691 0.9903277 0.7677887
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Table 7. Snow asymmetry parameter gs =
∫ λ2

λ1

gλSλdλ (see text), for snow grain radii rs.

rs(µm) 0.2 − 0.7µm 0.7− 1.19µm 1.19− 5.0µm

5 0.859913 0.848003 0.824415

7 0.867130 0.858150 0.848445

10 0.873381 0.867221 0.861714

15 0.878368 0.874879 0.874036

20 0.881462 0.879661 0.881299

30 0.884361 0.883903 0.890184

40 0.885937 0.886256 0.895393

50 0.886931 0.887769 0.899072

65 0.887894 0.889255 0.903285

80 0.888515 0.890236 0.906588

100 0.889073 0.891127 0.910152

120 0.889452 0.891750 0.913100

140 0.889730 0.892213 0.915621

170 0.890026 0.892723 0.918831

200 0.890238 0.893099 0.921540

240 0.890441 0.893474 0.924581

290 0.890618 0.893816 0.927701

350 0.890762 0.894123 0.930737

420 0.890881 0.894397 0.933568

500 0.890975 0.894645 0.936148

570 0.891035 0.894822 0.937989

660 0.891097 0.895020 0.939949

760 0.891147 0.895212 0.941727

870 0.891189 0.895399 0.943339

1000 0.891225 0.895601 0.944915

1100 0.891248 0.895745 0.945950

1250 0.891277 0.895951 0.947288

1400 0.891299 0.896142 0.948438

1600 0.891323 0.896388 0.949762

1800 0.891340 0.896623 0.950916

2000 0.891356 0.896851 0.951945

2500 0.891386 0.897399 0.954156
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B. Aerosols in Snow

The effects of aerosols, such as dust and carbon soot, can be included if desired. Field

work (Warren and Wiscombe, 1980, Warren and Clark, 1990, Grenfell et al. 2002, and

Brandt et al. 2005) suggest minimal aerosol contamination in snow except very close to

human settlements or possibly due to unusual volcanic or dust events. Aerosol effects can

be included (for each grain radius rs and band λ) from the definitions of extinction and

single scattering albedo using the band data in Tables 4 to 7 as:

ks(rs, λ) = κs(rs, λ) + σs(rs, λ)

ωs(rs, λ) = σs(rs, λ)/ks(rs, λ)
(69)

where κs and σs are the band absorption and scattering coefficients respectively. If for

example, we assume the aerosol effects only the absorption coefficients, we can write:

κs(rs, λ) = κps(rs, λ) + κd(rs, λ) + κcs(rs, λ) (70)

where subscript ps refers to pure snow, d to desert dust and cs to carbon soot respectively.

Then from the definitions in Eq. 69 the adjusted extinctions and single scattering albedo

can be recomputed and used in the snow radiation calculation to include the desired dust

and carbon soot effects.

C. Transition From Snow Covered Ice to Bare Ice

The present treatment of solar radiation in CCSM3 (section 2) uses a fractional horizontal

coverage of snow over sea ice, fs, as in Eqs. 8 and 9, which is a function of snow depth. In

reality, for small snow depths (order a few centimeters) some patchy snow and uncovered

sea ice will usually be present simultaneously (Allison et al. 1993, Brandt et al. 2005).

In the CCSM3 solar radiation treatment, snow of any depth is completely opaque to solar

radiation (Eq. 13), which is not realistic for small snow depths and large snow grain radii.

For the Delta-Eddington solar radiation treatment, the fractional horizontal coverage of

snow is one for snow depth greater than .03 m; for snow depth less than .03 m we allow

fractional snow coverage proportional to the snow depth. For snow overlying sea ice, the

Delta-Eddington solar radiation treatment allows penetrating solar radiation that depends

on snow depth and snow grain size, as illustrated in Fig. 5. As shown in Fig. 5, when

snow grains increase in size, the snow depth required to mask the underlying sea ice from

penetrating solar radiation becomes thicker. A few centimeters of snow will mask the

underlying sea ice only for the smallest snow grain radii. This shows that the Delta-

Eddington solar radiation treatment results in a smooth transition in AOPs between snow

covered and bare sea ice as the snow melts. Also, the larger the snow grain radii, the more

absorptive each grain becomes (i.e. lower ω′; see Table 6) and therefore the asymptotic

snow layer albedos for thick layers decline with increasing grain radius (Fig. 5).
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D. Tuning Snow Apparent Optical Properties

It is sometimes necessary to adjust solar radiation absorbed in sea ice for coupled CCSM

applications to produce acceptable polar simulations. In the present CCSM3 treatment,

such tuning usually involves direct changes to the snow albedos (section 2; compare the

x1 and x3 non-melting snow albedos of Eq. 2 for example), but such changes are usually

not consistent with the rest of the parameterization. For instance, one could arbitrarily

change the visible band albedos and not the near-infrared band albedos, or change the two

band albedos by guessing how much each band should change relative to the other.

In the Delta-Eddington solar radiation treatment, we can adjust the snow grain radius rs

used for non-melting and/or near-melting snow, and thus snow IOPs, in a manner that

self-consistently changes all computed snow AOPs. Table 3 can be used as a guide to

determine how much to change grain size if an estimated change in the snow albedo is

known. The details of such changes will depend on how the snow grain radius rs and snow

density ρs are specified (see Table 2).

Let us consider the simplest sea ice snow model that specifies snow grain radius rs and snow

density ρs for non-melting and near-melting conditions. One can select a non-melting snow

grain radius whose snow albedo agrees closely with the present version of solar radiation

in CCSM for the high horizontal resolution case (x1; see Table 21). From Table 3, we

could estimate that a snow grain radius of 290µm would result in about the same snow

broadband albedo. To lower the broadband albedo by .05 for x3 resolution (see Eqs. 2),

from Table 3 one could choose a snow grain radius of 870µm. The snow band albedos shown

in Table 3 (and hence all other AOPs) for the increased snow grain radius will be computed

consistently (e.g. the snow IOP Tables 5 through 7). For near-melting conditions from

Eq. 3 we note that CCSM has broadband snow albedos 0.745, so from Table 3 we would

need a very large snow grain radius of 2000µm or more.
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5.3 Inherent Optical Properties: Sea Ice

The objective is to specify vertical profiles of inherent optical properties (IOPs) for bare

and ponded sea ice that are (i) consistent with climatology, (ii) representative of both

first and multi-year ice, (iii) appropriate for both thin and thick ice, and (iv) designed to

produce appropriate backscatter of solar radiation to atmosphere, transmittance to ocean,

and vertical flux distribution within the ice.

IOP profiles for bare and ponded ice are derived from optical observations made during

SHEBA. The variability in observed spectral albedo is used to identify variability in the

IOP profile. Finally, ways to tune the IOP profiles are suggested. Many of the model

calculations presented in this section were carried out using a 4-stream discrete ordinates

method 1-D radiative transfer model (DOM; Grenfell, 1991) with diffuse incident radiation.

The assumption of diffuse incident radiation is appropriate for the low sun angle of high

latitudes and the frequent complete overcast observed in the Arctic during summer.

A. Derivation of Bare Ice and Ponded Ice Profiles

Average albedo

Spectral albedo data taken along the albedo survey line (“albedo line”) during the SHEBA

observations of the summer of 1998 (Perovich et al., 2002) were used to identify average

albedos for bare and ponded ice cases (Fig. 6). The ponded ice cases represent 100% pond

coverage. These average albedo measurements were taken on the albedo line between 7

July and 12 August 1998. The band averaged values for these spatially and temporally

averaged albedos are given in Table 8. Since the data do not span the entire spectral

range encompassed by the CCSM computation, the computation of spectrally integrated

values for the 0.2 – 0.7 micron band and 1.19 – 5.0 micron band were carried out by

extrapolating the data based on our best understanding of the optical properties of sea

ice. Measurements in the 1.19 - 5.0 µm band are highly uncertain. For the ponded case,

DOM was used to predict an albedo in this band of 0.066, based on the Fresnel reflection

at the pond surface. Bare ice measurements were not made at these long wavelengths

either, so the model was used to predict an albedo in this band of 0.110. Since the Fresnel

layer in the bare ice case is beneath the surface scattering layer, we do not expect light at

these long wavelengths to be affected by the refraction. The estimated albedo is based on

our best understanding of the scattering and absorption of ice in the surface layer.
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Table 8. Band averaged albedos and related standard deviations for observed spectra,

obtained along the albedo line during the SHEBA observations of the summer of 1998.

The ponded ice band albedos are for 100% pond coverage.

Spectral band 0.2 − 0.7µm 0.7 − 1.19µm 1.19− 5.0µm

Bare ice albedo 0.753± 0.023 0.569± 0.028 0.110± 0.027

Ponded ice albedo 0.251± 0.115 0.086± 0.022 0.066± 0.007

The determination of typical IOP profiles for the bare and ponded ice cases was carried

out by assuming two typical ice property profiles. The bare ice case was assumed to be 2

m thick ice and the ponded ice was taken to be 1.5 m thick. Density profiles were assigned

based on observed field data (Table 9). We distinguish three types of layers for bare sea

ice: SSL, DL and INT layers, and two for ponded ice: SSL and INT layers. Note that the

density of interior and ponded ice (0.920 Mg m−3) is greater than the density of pure ice

(0.917 Mg m−3), reflecting fractions of liquid water and salt in the included brine.

Table 9. Ice thickness and density profiles for bare and ponded ice cases used to derive

IOP profiles. The ice thickness was taken to be 2 m for the bare case, 1.5 m for the ponded

case.

Bare ice Ponded ice

Layer Thickness Density Layer Thickness Density

(cm) (Mg m−3) (cm) (Mg m−3)

1/4 (SSL) 5 0.42 1/4 (SSL) 5 0.92

3/4 (DL) 45 0.83 3/4 (INT) 32.5 0.92

2 (INT) 50 0.92 2 (INT) 37.5 0.92

3 (INT) 50 0.92 3 (INT) 37.5 0.92

4 (INT) 50 0.92 4 (INT) 37.5 0.92

Absorption coefficient

The IOPs required by the Delta-Eddington treatment of solar radiation consist of ver-

tical profiles of extinction coefficient k(z), single scattering albedo ω(z), and asymmetry

parameter g through the snow/pond/ice column. The first two of these three quantities

are functions of the scattering coefficient σ(z) and absorption coefficient κ(z), such that

k(z) = σ(z) + κ(z), and ω(z) = σ(z)/k(z).

It is useful to determine values of the absorption coefficient κ(z) first. Following Grenfell

(1991), the bulk κ(λ) for sea ice (where λ is wavelength) can be computed as:

κ(λ) = κpi(λ)Vpi + κbr(λ)Vbr + κps(λ)Vps + κim(λ)Vim (71)

38



where subscript “pi” indicates pure ice, subscript “br” indicates brine, subscript “ps”

indicates precipitated salts, subscript “im” indicates impurities (typically soot, sediment,

or organic material), and V is the fractional volume of each constituent. Fractional volumes

range between 0 and 1. Precipitated salts are solid salt crystals that precipitate from the

brine as the temperature decreases, liquid water freezes to the inclusion walls, and the

brine concentrates.

In this treatment, the bulk absorption for sea ice is attributed entirely to the pure ice and

liquid brine components. The precipitated salts are assumed to have negligible absorption.

We assume no impurities within the ice. Furthermore, differences in absorption for brine

(liquid water) and pure ice are assumed to be negligible. As a result,

κ(λ) ≈ κpi(λ)(Vpi + Vbr) . (72)

From Cox and Weeks’ (1983) expressions for Vpi and Vbr, we make the approximation that

Vpi + Vbr = ρsi/ρpi where ρsi is the density of sea ice (typically between 0.5 Mg/m3 and 0.92

Mg/m3) and ρpi is the density of pure ice (0.917 Mg/m3), so that:

κ(λ) ≈ κpi(λ)ρsi/ρpi (73)

Because we assume the absorption coefficient of water (brine) to be approximated by the

absorption coefficient for pure ice, this approximation is best for low salinity ice, but grows

worse for high salinity ice. At 15 ppt salinity, this approximation will result in as much as

a 4% error in the calculation of κ(λ). Estimated uncertainties for the assignment of density

for the various layers within the ice column are at least as large.

Table 10. Calculated absorption coefficients for bare, melting sea ice.

Layer Thickness 0.2 − 0.7µm 0.7− 1.19µm 1.19− 5.0µm

(cm) κ(m−1) κ(m−1) κ(m−1)

1/4 (SSL) 5 .100 3.74 642

3/4 (DL) 45 .198 7.39 1270

2 (INT) 50 .219 8.20 1400

3 (INT) 50 .219 8.20 1400

4 (INT) 50 .219 8.20 1400

Table 10 gives the computed values of κ(λ) relevant for the bare ice case. We distinguish

SSL, DL and INT layer values. Band averaged values are derived from the spectral κ values

from the visible (Grenfell and Perovich, 1981) and near infrared (Irvine and Pollack, 1968)

by integrating κ(λ) weighted by a downwelling incident spectrum for a mostly clear polar

sky (D. Perovich, personal communication, 2005). This downwelling spectrum does not

include wavelengths shorter than 350 nm or longer than 2500 nm, so values for these

wavelengths were extrapolated from the existing spectrum.
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These band-averaged absorption coefficients are appropriate for use near the ice surface,

but not necessarily in the ice interior. Ideally, absorption coefficients for use within the

ice should be weighted by a typical in-ice spectral irradiance. This implicitly introduces

a bias to whatever ice thickness is initially selected for determining this within-ice irra-

diance. As of now, all the absorption coefficients employed in this parameterization were

calculated with an estimated surface irradiance weighting. While the transmittance calcu-

lated through the ice might be sensitive to this approximation, the albedo should not be

sensitive to the method used to estimate absorption coefficients deeper within the ice.

Scattering coefficient and asymmetry parameter

Scattering parameters were inferred from the observed spectral albedo data using results

from the 4-stream Discrete Ordinates Method radiative transfer model (DOM). Scattering

was taken to be independent of wavelength, a result of Mie theory for scatterers with a

distribution of sizes considerably larger than the wavelength. A similarity relation was used

to assume that the scattering asymmetry parameter (g) could be fixed and, by adjusting the

scattering coefficient (σ), the total amount of scattering could be appropriately represented.

This similarity relation is:

s = σ(1 − g) (74)

From this relationship, domains with identical s and κ have approximately the same appar-

ent optical properties (e.g. McCormick and Rinaldi, 1989). This relationship thus permits

us to fix the value of g and then determine a value for σ. The range of g values appropriate

for sea ice is estimated from Mie theory, given typical inclusion sizes and known refractive

indices for ice, brine (Maykut and Light, 1995), and air. Mie calculations result in values

between 0.86 and 0.99, but the development of a consistent treatment for IOPs is consider-

ably simplified if the g values are fixed and similarity employed. Therefore, the value of g

was set to 0.94 for all layers in the ice.

By matching DOM calculations run for a matrix of σ values and the κ(z) profiles given

in Table 10 with the observed spectral albedo, a σ(z) profile is inferred. We adjust the

σ(z) profile to distinguish SSL, DL and INT layers, and constrain the values further to

be roughly in the mid-range of the SHEBA cases observed in Light et al. (submitted)

and to yield spectral albedos within the variance of the albedo line values of Table 8.

The final σ(z) profile is shown in Table 11. Because the inclusions in sea ice that cause the

scattering of solar radiation are generally much larger (diameters greater than 10 µm) than

the wavelength of the radiation (0.2 – 5 µm), values of σ are assumed to be independent of

wavelength. The real refractive index (n) given in Table 11 corresponds to typical values for

the 0.2 – 0.7 µm waveband. Because of the enhanced absorption in the longer wavebands,

the refractive index plays a diminished role as the Fresnel boundary is buried beneath a

layer which is highly absorptive.
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Table 11. Vertical profiles of refractive index (n), scattering coefficient (σ), and scattering

asymmetry parameter (g) for the bare ice case.

Layer Thickness n σ g

(cm) (m−1)

1/4 (SSL) 5 1.0 1000 0.94

3/4 (DL) 45 1.3 100 0.94

2 (INT) 50 1.3 20 0.94

3 (INT) 50 1.3 20 0.94

4 (INT) 50 1.3 20 0.94

Fig. 7 shows the observed average spectral albedo compared with the CCSM3 albedo pa-

rameterization and the Delta-Eddington parameterization. The integrated wavelengths for

the observed average albedo are shown in Table 8. Uncertainties for the observed albedo

in the 1.19 – 5.0 µm waveband could be considerably larger than indicated here. Not

only are measurements in this waveband scarce, but the albedo is very sensitive to the

microstructure of the uppermost millimeters of the ice. These observed values compare

with the proposed new band averaged DOM computed albedo values of 0.754, (0.2% dif-

ference from observation), 0.573, (0.75%), and 0.023, (80%) for the three bands respectively.

It is worth pointing out that the finite resolution of the vertical variation in ice IOPs in

CCSM, especially near the surface, along with the constraint to treat scattering properties

independent of waveband, results in significant departure between observed and modeled

albedo in one or more wavebands. To correct for this problem, we have adjusted the scat-

tering coefficient for the 1.19–5.0µm band to produce an albedo in better agreement with

the observations. This adjustment is designed to compensate for the finite layer structure

required by CCSM within the sea ice. To compensate for this lack of a very thin, highly

scattering layer at the ice surface, we have increased the scattering coefficient for the entire

5 cm thick surface layer from 1000 m−1 to 6400 m−1 for this waveband alone. Scattering

coefficients of magnitude 6400 m−1 have been observed in thin surface layers on melting

bare ice (Light et al., submitted). The full set of IOPs for bare ice are given in Table 12.
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Table 12. Inherent Optical Properties of bare sea ice. k is the extinction coefficient, ω

the single scattering albedo, and g the asymmetry parameter.

Level 0.2 − 0.7µm 0.7− 1.19µm 1.19− 5.0µm

k(m−1) k(m−1) k(m−1)

1/4 (SSL) 1000.1 1003.7 7042

3/4 (DL) 100.2 107.7 1309

2 (INT) 20.2 27.7 1445

3 (INT) 20.2 27.7 1445

4 (INT) 20.2 27.7 1445

ω ω ω

1/4 (SSL) .9999 .9963 .9088

3/4 (DL) .9980 .9287 .0305

2 (INT) .9901 .7223 .0277

3 (INT) .9901 .7223 .0277

4 (INT) .9901 .7223 .0277

g g g

1/4 (SSL) .94 .94 .94

3/4 (DL) .94 .94 .94

2 (INT) .94 .94 .94

3 (INT) .94 .94 .94

4 (INT) .94 .94 .94

The albedo of ponded ice is determined by the optical properties of pond water and the ice

beneath the pond. Perovich et al. (2002) noted “light” and “dark” ponds along the albedo

line which resulted in the large visible pond albedo range of Fig. 6 . We constrained the

pond INT IOPs to be those for bare sea ice, then tailored the SSL scattering such that

the albedo matched the average melt pond albedo for the albedo line, averaged over the

SHEBA summer. The IOPs were derived for 150 cm-thick ice overlain by a 35 cm deep

pond. The average IOPs appropriate for ponded ice are given in Tables 13, 14 and 15.

Because variations in the scattering properties of ice beneath ponds are understood to be

significantly larger than the variation in pond water optical properties, only the absorption

of radiation, not scattering (molecular or particulate), within the water is represented.

Note also that the refractive index of the ponded case is set to 1.3 for both the pond water

and underlying ice.
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Table 13. Absorption coefficients for the ponded ice profile.

Layer Thickness 0.2− 0.7µm 0.7 − 1.19µm 1.19− 5.0µm

(cm) κ(m−1) κ(m−1) κ(m−1)

Pond 35 .200 12.4 729

Ice 150 .219 8.2 1400

Table 14. Scattering properties for ponded ice: index of refraction (n), scattering coeffi-

cient (σ), and scattering asymmetry parameter (g).

Layer Thickness n σ g

(cm) (m−1)

Pond 35 1.3 0 0

Ice (SSL) 5 1.3 70 0.94

Ice (INT) 145 1.3 20 0.94

Table 15. Inherent Optical Properties of ponded ice. k is the extinction coefficient, ω

the single scattering albedo, and g the asymmetry parameter. Ice properties are for the

under-pond ice, and valid for all levels. Pond depth used to infer IOPs is 0.35 m and

ice-under-pond thickness is 1.5 m.

Type 0.2 − 0.7µm 0.7 − 1.19µm 1.19− 5.0µm

k(m−1) k(m−1) k(m−1)

pond 0.20 12 729

ice (SSL) 70.2 77.7 1309

ice (INT) 20.2 27.7 1445

ω ω ω

pond 0 0 0

ice (SSL) .9972 .9009 .0305

ice (INT) .9901 .7223 .0277

g g g

pond 0 0 0

ice (SSL) .94 .94 .94

ice (INT) .94 .94 .94

Note that the under-pond SSL and DL ice IOPs are different from those of bare ice in

Table 12. In section 5.3E we present one approach to modeling the transition between
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these two surface types as pond depth becomes small.

In addition to the inherent optical properties of bare ice and ponded ice, the spectral re-

flectivities to direct and diffuse radiation of the underlying ocean are required. As ice and

ocean have very nearly the same index of refraction, the usual surface refraction effects

of the air/ocean interface can be ignored. For distilled water, scattering coefficients for

wavelengths > 0.7µm are so small that diffuse reflectivities would be less than .001 and

can be ignored. For the visible band, the reflectivity depends on the spectral distribu-

tion of penetrating radiation, as the scattering coefficients are spectrally varying due to

molecular scattering: see Paltridge and Platt (1976) and references therein. As various

approximations are possible, we assume visible band direct and diffuse reflectivity of .01,

and near-infrared reflectivity 0 (see also Paulson and Simpson, 1977).

B. Absorption by Algae

The assumption that there exist no impurities within the ice is reasonable for the surface

and interior, but probably not a good assumption for the ice at the ocean interface. Ab-

sorption by impurities in the lowest layer will not substantially affect the spectral albedo,

but will affect the transmittance of light to the ocean.

Concentrations of light absorbing algae are commonly found in sea ice near the ice-ocean

interface. Algae particles are assumed to cause no significant scattering. Absorption by

algae is assumed to be due to chlorophyll a (Chl a), and is restricted to the 0.2 – 0.7 µm

waveband. We follow the treatment of Grenfell (1991), where

κalg = SA ∗ mgchla/z (75)

where κalg is the absorption coefficient for algae, SA the specific absorption coefficient (0.004

m2 [mg Chl a]−1), and mgchla is the absorber mass path in milligrams of Chl a per m2 over

the layer thickness z. The specific absorption coefficient SA is derived from that given by

Soo Hoo et al., 1987 (0.0078 m2 (mg Chl a)−1) multiplied by a spectral weighting coefficient

(Grenfell, 1991) and weighted by the same standard incident irradiance used to weight the

ice absorption coefficients. Thus,

κalg = 0.004m2[mg Chl a]−1 ∗ mgchla/z (76)

Typical values of mgchla are between 0 and 300 mg m−2. This computed value of κalg can

then be added directly to the bulk κ for the layer (Eq. 71). This value of κ will in turn

affect extinction and ω. Values for κalg are given in Table 16 for a range of mgchla values

distributed over a 0.5 m thick ice layer. The magnitude of the absorption incurred by 10

mg Chl a distributed over a 0.5 m thick layer is comparable to the absorption incurred by

19 cm of clean, interior sea ice (Table 10; 0.2 – 0.7 µm band).
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Table 16. Values of κalg (for 0.2 – 0.7 µm waveband) for select values of mgchla distributed

over a 0.5 m thick layer.

mgchla κalg

(mg Chl a) m−2 (m−1)

1 0.008

10 0.08

100 0.8

300 2.4

C. Transmittance Through Bare Ice and Ponded Ice

Spectral values of ice transmittance computed from the IOP profiles were compared with

observations. There exists no observational “climatology” for ice transmittance. It is

difficult to compare predicted and observed transmittance for at least three reasons. First,

transmittance of light beneath sea ice is difficult to measure, so there is not an abundance

of data, and the uncertainties are significant (particularly due to edge effects). Second,

the transmittance depends on ice thickness, so meaningful comparisons between observed

cases requires such cases to have identical ice thicknesses, which is rarely obtainable in

practice. Third, the transmittance can be very sensitive to the presence of absorbing

impurities within the ice column. In particular, substantial concentrations of chlorophyll

and sediment can be prevalent within the ice. Concentrations of these impurities can affect

both albedo and transmittance, but those within the interior or near the bottom of the

ice will affect transmittance predominantly. Fig. 8 shows spectral transmittance data

taken beneath various bare ice locations (with various ice thicknesses) during the SHEBA

summer, along with model predicted transmittance for ice thicknesses between 1.0, 1.5 and

2.0 m. We assume 75 mg Chl a m−2 over 0.5 m in the lowest sea ice layer.

The model-predicted transmittances roughly correspond with the observations. Clearly

the transmittance measured under the ice on 15 August (first year, 1 m thick) has dis-

tinctly different spectral shape than the other transmittance spectra. The spectral peak

at wavelength longer than 550 nm suggests that a significant quantity of ice algae inhab-

ited this ice. The wavelength integrated transmittance for this observed spectrum is 0.09,

which is close to the computed 0.094 value.

Fig. 9 shows observed spectral transmittance beneath ponded ice on 27 July measured

at the SHEBA site, along with the Delta-Eddington solar radiation calculation for 200

cm thick ponded ice (150 cm ice + 50 cm pond depth). Based on these comparisons, we

conclude that the new treatment for solar radiation is appropriate for the simulation of

light transmission through both bare and ponded ice.
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D. Variability

The observed albedo variability is remarkably small for bare ice (average standard devi-

ation in 0.2 – 0.7 µm waveband is ± 0.02) and remarkably large for ponded ice (average

standard deviation in 0.2 – 0.7 µm waveband is ± 0.12), (see Table 8). The reason for

this albedo variability difference is due to the physical properties of the two ice types.

Bare ice has an optically thick SSL. The thickness of this layer responds to changes in

freeboard height (and hence changes in ice thickness), surface meteorological conditions,

and the penetration and absorption of solar radiation. When the thickness of the layer

increases, the total backscattering from the layer increases. The properties of the upper-

most millimeters/centimeters of this surface layer are sensitive to the amount of direct

solar radiation incident on the ice and whether there is atmospheric moisture available to

form condensation on the surface. In general, when direct solar radiation penetrates the

uppermost layers, there are increases in backscattering at depth within this surface layer.

When condensation forms immediately at the top surface of the ice, the backscattering

increases where the condensation forms. The net effects of these physical changes lead to

only small variability in the solar radiative properties of bare ice at all wavelengths.

Ponded ice, on the other hand, has been observed to have widely varying spectral albedo

in the visible band. The albedo at visible wavelengths depends critically on the thickness

and scattering properties of the ice beneath the pond, and has little relation to the pond

depth. When this ice contains significant concentrations of gas and brine inclusions it is

highly scattering; likewise ponded ice with small numbers of inclusions has considerably

lower albedo. It is common to observe the full range of pond albedos at various sites on

a single multiyear floe at a single time. Ponds on undeformed first-year floes are likely to

have albedos with less pond-to-pond variability.

A simple way of simulating these variations is to vary the total amount of scattering by

the ice. Fig. 10 shows model calculated albedos for the bare and ponded ice cases where

the scattering coefficient has been increased and decreased by 15% (designed to simulate

one standard deviation of the bare ice observations) and 30% (designed to simulate two

standard deviations of the bare ice observations), and by +300% and -50% (designed to

simulate one standard deviation of the ponded ice observations). Since a significant part

of the pond albedo variability can be attributed to changes in ice thickness during the

course of a melt season, some of the considerable variability associated with ponds will be

expressed strictly as a result of the ice thickness distribution. For this reason, estimates

of +300% and -50% increases in scattering coefficient are to be used with caution when

simulating the variability of ponded ice albedo. Realistically, these changes in scattering

apply to optical depth, the product of extinction and ice thickness. Since the albedo of

thick bare ice is relatively insensitive to the ice thickness, the variability in observed bare

ice albedo is largely attributable to changes in extinction, particularly scattering.

Also note that variability of ponded ice is approximately five times larger than variability
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of bare ice, and that the areal coverage of ponded ice is roughly 0.3 at its maximum value.

This implies that the relative influences of bare and ponded ice variability on the area

averaged albedo are comparable.

Fig. 11 shows the effects of applying a one standard deviation change (15%) in σ(z) and

two standard deviation change (30%) to the bare ice transmittance calculation. Fig. 12

shows the effects of applying a one standard deviation change (+50% and -300%) in σ(z) to

the ponded ice transmittance calculation. Note that uncertainty in transmittance through

ponded ice can be translated to uncertainty in ice thickness.

E. Transition From Bare Ice to Ponded Ice

In section 5.3A we presented bare ice and ponded ice IOPs (Tables 12 and 15 respectively).

The SHEBA measured albedos on which these IOPs are based (Table 8) differ significantly

between bare ice and ponded ice. As pond water is mostly transparent in the visible band

(e.g. Tables 14 and 15), the difference between bare ice and ponded ice albedo is due

primarily to the reduction in scattering in the under pond ice (compare Tables 11 and 14).

We showed in section 3 that when pond depth hp = 0, bare ice IOPs are used to compute

AOPs; when hp > 0, ponded ice IOPs are used (e.g. Eq. 18). This raises the question of

how small hp can be before bare ice IOPs and not ponded ice IOPs are used, and what

kind of transition should there be between the two sets of IOPs that somehow depends on

the value of hp. Can it be argued that ponds with hp values as small as, say .01m, should

have under pond IOPs? What about .001m?

We approximate the transition between the highly scattering bare ice and reduced scat-

tering ice under ponds by following the previous subsection on variability. There it was

argued that albedo variability in both bare sea ice and ponded ice can be simulated by

variations in the scattering coefficient in sea ice, due to variability in concentrations of

gas and brine inclusions. If we then interpolate the scattering coefficient in pond depth

between bare ice and ponded ice IOPs, we will compute a bare ice to ponded ice transition

that is consistent with observations on albedo variability.

Hence, we define two pond depths: hpmin, the minimum pond depth, and hp0, an asymptotic

pond depth below which a linear interpolation of the scattering coefficient in pond depth

hp is done for IOPs from bare ice to ponded ice. For hpmin < hp < hp0, with “i” and “p” for

bare ice and ice under pond IOPs respectively, we have at each sea ice level (Table 1):

σi = kiωi, σp = kpωp (77)

κp = kp(1 − ωp) (78)

σ(hp) = σi + (σp − σi)(hp/hp0) (79)

k(hp) = σ(hp) + κp (80)

ω(hp) = σ(hp)/k(hp) (81)
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g(hp) = gi (82)

(see first few equations in Eqs. 50 for definitions of σ and k). Fig. 13 shows the resulting

broadband Delta-Eddington albedo dependence on pond depth, using the values hpmin =

0.005 m and hp0 = 0.20 m. Ponds deeper than 0.20 m in this plot show decline in pond

albedo towards the deep ocean limit; the large depths are unrealistic for ponds over sea

ice, but are shown to illustrate that the broadband Delta-Eddington albedo for deep water

asymptotes to the correct albedo. One can see that without any interpolation at all, pond

albedos would remain very small as pond depth tends to zero, as the under pond ice IOPs

have little scattering as just mentioned. The interpolation allows an adjustable and more

physically defensible transition. Note that most of the spectral variation in albedo with

pond depth is in the visible, as the near-ir asymptotes quickly for pond depths larger than

.05 m .

F. Tuning Bare Ice and Ponded Ice Apparent Optical Properties

As mentioned for snow, it is sometimes necessary to adjust solar radiation absorbed in sea

ice for coupled CCSM applications to produce acceptable polar simulations. In the present

treatment of solar radiation in CCSM3, such tuning can involve direct changes to the sea

ice albedos (section 2; compare the x1 and x3 non-melting sea ice albedos of Eq. 4 for

example), but such changes are usually not consistent with the rest of the parameterization.

For instance, just as for snow albedos, one could arbitrarily change the visible band sea ice

albedos and not the near-infrared band sea ice albedos, or change the two band albedos

by guessing how much each band should change relative to the other.

In an effort to provide guidance for tuning this parameterization, we address the question:

What is the typical range of the IOPs that produce realistic variations in surface albedos

and other measured apparent optical properties (AOPs)? We can think of the variation

in IOPs as a standard deviation about the mean. Tuning can then involve adjusting the

mean IOPs in units of the standard deviation. In this manner, any user will know how

far (in units of variance) from the typical mean they are tuning. We already presented a

discussion of bare ice and pond ice albedo variability two subsections ago, and introduced

implicit scaling factors for the scattering coefficients when we discussed one and two sigma

variations. Here, we formalize this for tuning purposes.

Within the interior of the ice, the gas and brine content are determined by ice growth rate,

brine capture and desalination processes (gravitational drainage and flushing primarily).

Within the SSL, the individual ice grain sizes are determined by the absorption of solar

radiation, drainage of melt water, and condensation of atmospheric moisture at the surface.

These micro-structural properties directly affect the scattering coefficient of the ice, which

in turn affect the AOPs (e.g., albedo and transmittance) of the ice cover. We propose

to vary the IOPs by maintaining the vertical structure and absorption coefficient but

permitting the scattering coefficient to vary, consistent with the discussion on variability
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two subsections previous.

For sea ice, let σ(z) and κ(z) be the scattering and absorption coefficients respectively,

where z is the vertical coordinate. Let s±σ (z) be the empirical standard deviations for an

increase and decrease of the scattering coefficient, respectively. To preserve the vertical

and spectral profiles for the coefficients, we assume s±σ (z) are fractions f±
ice of the mean

value, i.e.

s±σ (z) = f±
ice σ(z) (83)

where f+
ice, f−

ice are the positive fractions of the mean scattering coefficient that yield the

standard deviation for a typical increase and decrease, respectively. These fractions are to

be determined from the data.

Thus, tuning can be done by defining a dimensionless “standard deviation parameter” Rice,

so that the modified standard deviation for scattering s′σ(z) can be expressed as:

s′σ(z) = Rice s±σ (z) = Ricef
±
ice σ(z) (84)

k(z) = κ(z) + σ(z) + s′σ(z) (85)

ω(z) = (σ(z) + s′σ(z)) / (σ(z) + s′σ(z) + κ(z)) (86)

Note that Rice can be negative as well as positive, and has no bounds apart from the

requirements of positivity of the modified scattering coefficient σ(z)+s′σ(z), and rationality!

Any value within −1 to +1 would be within the range of most measurements. Typical tuning

might be in the range of −2 to +2.

From our discussion of variability, for bare ice we select f+
ice = 0.15 and f−

ice = 0.15. For

bare sea ice of thickness 1.5 m and Rice = +1, broad band albedo changes from 0.648 to

0.671, a change of +.023. For Rice = −1, the change is from 0.648 to 0.620, a change of −.028.

The corresponding albedos for Rice = +2 and Rice = −2 are 0.648 to 0.690 and 0.648 to 0.585,

changes of +.042 and −.063 respectively. These changes are approximately consistent with

Table 8; but note they are not linear about the mean. Note also that the visible band

transmissivity to the ocean changes in the opposite sense to the broadband albedo, with

about half the broadband change.

For ponded ice, we select f+
ice = 2.00 and f−

ice = 0.50. With sea ice of thickness 1.5 m and

pond thickness 0.35, for Rice = +1, broad band albedo changes from 0.193 to 0.262, a change

of +.069. For Rice = −1, the change is from 0.193 to 0.153, a change of −.040. As with bare

sea ice, these changes are approximately consistent with Table 8, but are non-linear about

the mean.

For completeness, we also acknowledge that from the previous subsection, the two pond

depths hpmin and hp0 can be changed to modify the transition between bare ice and ponded

ice for tuning purposes. Fig. 13 can be used as a guide as to how the transitional albedos

will vary with changes in these two depths.
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6. Delta-Eddington Solar Radiation Treatment: Comparisons

In this section, we compare solar radiation calculations between the Delta-Eddington solar

radiation treatment and three other radiation methods: (1) SNICAR for snow-covered sea

ice, (2) a Monte Carlo radiation model for bare sea ice, and (3) the present solar radiation

scheme for sea ice in CCSM3 (section 2).

There are several reasons for making such comparisons. The Delta-Eddington solar ra-

diation parameterization is an approximate solution to the spectral multiple scattering

problem, albeit a reasonably good one (see section 4.3). It would be wise nevertheless to

compare it against a more accurate calculation of spectral multiple scattering for several

idealized cases. Close agreement would then increase confidence in the accuracy of the

Delta-Eddington solar radiation parameterization, and also give some guidance as to the

absolute accuracy of the approximation.

In addition, the approximate method of representing refraction in sea ice (section 4.1)

needs to be checked against a radiation model that more accurately calculates the angular

details of multiple scattering across the refractive boundary. The large number of angles

required for convergent calculation of diffuse reflectivity below the refractive boundary

(see end of section 4.1 and Eq. 25) is an indication of how sensitive the results may be to

angular resolution.

Finally, it is of great interest to compare radiation calculations with the present solar

radiation scheme for sea ice in CCSM3 against those of the Delta-Eddington solar radiation

parameterization. The discussion in section 2 highlighted the shortcomings of the present

solar radiation method in sea ice for CCSM3, but more from a fundamental theoretical

point of view; in this section, we compare actual radiation calculations between the two

methods.

For most of these comparisons, the broadband Delta-Eddington albedos are computed

employing an atmosphere radiation model above the surface that has a typical polar at-

mosphere profile. This allows a realistic assessment of multiple scattering between the

surface sea ice system and the atmosphere above, for both clear sky and overcast condi-

tions. The spectral partition between visible and near-infrared, which is important when

comparing broadband absorption, is more accurately assessed when such an atmosphere

radiation model is used above the sea ice system. The atmosphere radiation model also

allows an accurate calculation of the partition between direct and diffuse solar radiation

incident on the surface, in a manner similar to that of CCSM3, allowing the full use of

the direct/diffuse dependencies of the Delta-Eddington solar radiation parameterization.

If an atmosphere radiation model above the surface is not used, then one has to make

some assumptions about surface/atmosphere multiple scattering and spectral partition in

order to specify the atmosphere solar radiation fluxes. Hence, using the atmosphere radia-

tion model yields a self-consistent calculation of both solar radiation absorption within the
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surface sea ice system as well as multiple scattering between the surface and atmosphere,

which is a dominant factor determining the values of the four solar radiation fluxes (Eq.

1).

In section 6.1 we compare albedos and absorptions between the Delta-Eddington solar

radiation parameterization and SNICAR, a benchmark radiative transfer model of snow

(Flanner et al. 2006). This model computes radiative transfer through snow assuming

equivalent ice spheres over a log-normal size distribution about a specified effective radius,

using 470 spectral bands, for each of which Mie parameters were pre-computed for each

radius. The multiple scattering is evaluated using a two-stream solution. The incident

solar irradiance is taken from a narrow-band atmospheric radiative transfer model for mid-

latitude winter conditions for both clear and overcast skies. We consider this a benchmark

model for snow radiative transfer, which treats spectral variation of both incident solar

irradiance and the IOPs of snow grains in great detail. For this comparison, the Delta-

Eddington solar radiation treatment for snow can be considered as a three band mono-

disperse (i.e. single grain size which equals the effective radius) approximation.

In section 6.2 we present comparisons of albedos between the Delta-Eddington solar radi-

ation parameterization and a benchmark Monte Carlo radiation model. The Monte Carlo

radiation model of Light et al. (2003b) is used. This model is a highly angularly resolved

model, whereas the Delta-Eddington method (see around Eqs. 48,49) is very smooth in

its representation of the angular dependence of multiply scattered radiation. Because the

Monte Carlo model typically resolves the cosine zenith angle µ from +1 to -1 by 140 sepa-

rate streams of radiation, we refer to it as a benchmark, or standard, model for sea ice. We

use identical inherent optical properties in both models to insure that the basic differences

between the two calculations are confined to the angular resolution of the radiation and

the solution technique. Additionally, the Monte Carlo model is able to resolve the angular

details of the radiation across the refractive boundary, and therefore does not compute

diffuse radiation as does the approximate Delta-Eddington scheme (see Eqs. 23,24 and the

moment calculation following Eqs. 48,49).

In section 6.3 we compare not only albedos but also transmissions and absorbed fluxes

between Delta-Eddington solar radiation and the the present solar radiation scheme for

sea ice in CCSM3, for realistic polar conditions. The atmosphere radiation model and polar

atmosphere profile used in this comparison is presented in Appendix C. These comparisons

give an indication of how the Delta-Eddington solar radiation parameterization might

differ compared to the present sea ice solar radiation when used in fully-coupled CCSM3

integrations.

6.1 Benchmark Radiation Model for Snow: SNICAR

We compare snow-over-sea ice with 0.3 m deep snow and sea ice thickness 1.5 m in Table

17. The snow surface scattering layer is 0.04 m thick. The absorption of this layer is
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Table 17. Delta-Eddington (DE) and SNICAR comparison. Surface (srfc) snow layer .04

m thick, total snow depth 0.3 m, sea ice thickness 1.5 m, solar zenith angle 60◦ for 20 May

at 80N latitude. For various snow grain radii rs. Fluxes in Wm−2.

(a) Clear Sky. For DE, Appendix C atmospheric profile without cloud layer.

Flux and Albedo DE(50µm) SNICAR(50µm) DE(500µm) SNICAR(500µm)

solar irradiance 516.4 516.4 513.7 513.7

broad band albedo 0.865 0.860 0.755 0.754

vs/ni absorbed 3.7/66.0 3.4/69.2 12.8/113.2 11.7/114.7

snow SSL absorbed 67.4 70.6 102.1 108.4

snow INT absorbed 2.3 1.9 18.0 13.7

sea ice absorbed 0.1 0.1 5.9 4.5

Flux and Albedo DE(1000µm) SNICAR(1000µm) DE(2000µm) SNICAR(2000µm)

solar irradiance 512.3 512.3 510.3 510.3

broad band albedo 0.710 0.710 0.658 0.658

vs/ni absorbed 19.4/129.3 17.8/130.7 28.7/145.8 26.8/147.6

snow SSL absorbed 106.9 116.2 108.1 120.8

snow INT absorbed 29.9 22.4 45.0 34.3

sea ice absorbed 11.9 10.0 21.4 19.3

(b) Overcast Sky. For DE, Appendix C atmospheric profile, and r′s = 0.8rs.

Flux and Albedo DE(40µm) SNICAR(50µm) DE(400µm) SNICAR(500µm)

solar irradiance 376.9 376.9 341.1 341.1

broad band albedo 0.916 0.921 0.841 0.844

vs/ni absorbed 3.3/28.5 3.2/26.6 10.5/43.8 10.4/42.9

snow SSL absorbed 30.0 28.0 39.4 40.1

snow INT absorbed 1.8 1.7 10.6 9.2

sea ice absorbed 0.0 0.1 4.2 4.1

Flux and Albedo DE(800µm) SNICAR(1000µm) DE(1600µm) SNICAR(2000µm)

solar irradiance 326.1 326.1 308.7 308.7

broad band albedo 0.805 0.807 0.759 0.758

vs/ni absorbed 15.3/48.2 15.4/47.6 21.9/52.4 22.0/52.6

snow SSL absorbed 38.6 41.0 35.8 40.6

snow INT absorbed 16.3 13.6 23.3 18.9

sea ice absorbed 8.7 8.3 15.2 15.1
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termed the surface absorption. We consider both clear sky and overcast sky conditions with

cosine solar zenith angle µ0 = 0.5 . The Delta-Eddington solar radiation calculations use

the polar atmosphere of Table C for May 20 at 80N latitude; clear sky removes the cloud

layer. For clear sky, the Delta-Eddington calculations use rs without scaling (i.e. fr = 1 in

Eq. 68), while for overcast sky the best agreement with SNICAR results is obtained for fr

= 0.8 . We note that a solar irradiance was used for the band average albedos (see section

5.2A), and therefore it is not surprising that the clear and overcast comparisons should

differ. Overcast sky generally has less near-ir absorption due to water vapor and cloud,

and so the band albedos which are in close agreement for clear sky will tend to over-absorb

for overcast sky. By scaling the grain size down with fr = 0.8, we reduce the absorption

in DE and improve agreement with SNICAR.

The resulting broad band albedos between DE and SNICAR agree very well. However,

in nearly every case, the Delta-Eddington solar under absorbs in the snow surface layer

around 10%, while over absorbing in the snow interior up to 30% and in the underlying

sea ice up to 10%, compared to SNICAR. The under/over absorption biases are larger in

the clear sky than in the overcast comparison. The differences in the vertical profile of

absorption is not unexpected for just 3 spectral bands in DE compared to 470 for SNICAR.

Though adding a few more spectral bands in DE would likely improve the vertical profile,

we consider 30% accuracy in vertical absorption profile for snow acceptable considering

other uncertainties and computational constraints.

We finally note that to most accurately calculate snow layer albedo and absorption for

both clear and overcast sky, we can use the ratio of direct to total near-ir incident solar

irradiance (as used in section 5.1 to combine the two near-ir bands) to weight the scaling

factor fr between clear sky value of 1.0 and overcast sky value of 0.8 .

6.2 Benchmark Radiation Model for Sea Ice: Monte Carlo

We consider first an idealized case available for comparison from the Monte Carlo cal-

culations of Light et al. (2003b). This case is that of radiation of specified wavelength

incident normally (i.e. perpendicularly) on a single horizontally uniform slab. The slab

thickness and inherent optical properties are specified. Both non-refractive and refractive

slabs are considered. The non-refractive slab consists of granular scatterers and absorbers;

the refractive slab has the same number of scatterers and absorbers, but the slab index

of refraction is n = 1.31 (section 4.1). In other words, both non-refractive and refractive

conditions have the same optical depth τ , single scattering albedo ω, and asymmetry pa-

rameter g for the slab, but differ in the index of refraction, n = 1 and n = 1.31 respectively.

Results for a purely scattering slab (i.e. no absorption) for both isotropic scattering g = 0

and strong forward scattering g = 0.95, are shown in Table 18. The isotropic scattering case

is of more theoretical interest, while the strong forward scattering case is more applicable

to sea ice.

53



Table 18 shows that the Delta-Eddington solar radiation parameterization results com-

pare well with those of the Monte Carlo benchmark calculations. For the case of isotropic

scattering and no refraction (first two columns of Table 18), the absolute differences are

very small, less than .005. For isotropic scattering and refraction (next two columns) the

absolute differences are as large as .01 . This shows that our method of accounting for

refraction (section 4.1) introduces some error. The case of strong forward scattering but

no refraction (next two columns) have errors less than .008, while the case of strong forward

scattering with refraction (last two columns), the most realistic case for sea ice, has errors

as large as .02 . We note that the Delta-Eddington solar radiation albedos are systemati-

cally higher than the Monte-Carlo, suggesting that there is not enough radiation trapped

by refraction in our approximation (section 4.1; because of total internal reflection of dif-

fusely scattered upward radiation below the refractive boundary, radiation transmitting

the refractive boundary is partially “trapped” below it). Despite the errors, the overall

increase in albedo with optical depth is represented very well.

Table 18. Radiative Model Comparisons: Delta-Eddington and Monte Carlo Albedos.

Normally incident beam on a non-absorbing but scattering slab of specified optical thick-

ness τ and asymmetry parameter g. For the refractive slab, n=1.31 . DEG=Delta-

Eddington granular; DER=Delta-Eddington refractive; MCG=Monte Carlo granular;

MCR=Monte Carlo refractive. Monte Carlo results from Light et al. (2003b).

τ g = 0 g = 0 g = 0 g = 0 g = .95 g = .95 g = .95 g = .95

DEG MCG DER MCR DEG MCG DER MCR

1 .338 .341 .341 .340 .014 .012 .058 .055

2 .514 .518 .490 .480 .029 .025 .088 .077

5 .737 .736 .680 .681 .077 .071 .164 .145

10 .853 .852 .799 .805 .159 .152 .258 .242

20 .922 .924 .884 .893 .306 .307 .377 .367

50 .968 .970 .950 .955 .566 .568 .548 .544

The results comparing an absorbing slab are given in Table 19. In this case, only refractive

slab results are shown for strong forward scattering g = 0.95. The single scattering values ω

are typical for sea ice, and corresponding wavelengths are also shown. Absolute differences

in the Delta-Eddington solar radiation albedos compared to the Monte Carlo are less than

.007 . We note again that the Delta-Eddington albedos are systematically higher than the

Monte Carlo.
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Table 19. Spectral Radiative Model Comparisons: Delta-Eddington and Monte Carlo

Albedos. Normally incident beam on a refractive slab (n=1.31) of specified optical thick-

ness τ and single scattering albedo ω. Asymmetry parameter g =0.95 . λ is wavelength in

nanometers. DE=Delta-Eddington; MC=Monte Carlo. Monte-Carlo results from Light et

al. (2003b).

λ τ ω DE MC

500 37.51 0.9998 .481 .474

600 37.52 0.9995 .463 .458

700 37.58 0.9979 .386 .379

800 37.81 0.9917 .229 .221

900 38.38 0.9771 .114 .107

1000 40.55 0.9247 .044 .040

Finally, we compare spectral radiative model albedos between Delta-Eddington and Monte

Carlo in Table 20. These comparisons use the full vertical profile for bare ice (Table 12).

To compare the effect of refraction and its vertical location, we perform an additional three

comparisons, as shown in Table 20: with no refraction at all (first row), with the refractive

boundary at the top sea ice surface (second row), with the refractive boundary at the

standard level (third row), and with the refractive boundary one level below the standard

level (fourth row). The Monte Carlo calculations also include the effects of refraction,

where appropriate.

When no refractive boundary is present, spectral band albedos agree to better than .016

absolute (first row of Table 20). Notice how the 0.7 − 1.19µm band nicely represents the

intermediate effects between the highly scattering visible band and the strongly absorbing

1.19 − 5.0µm far infrared band. When the refractive boundary is placed at the top of the

ice (second row of Table 20), the Delta-Eddington errors are larger, particularly in the

0.7 − 1.19µm spectral band, indicating that our Delta-Eddington refraction method is only

approximate. Notice how the refractive boundary “traps” radiation below it due to total

internal reflection, resulting in lower albedos (e.g. compare the first and second rows of

Table 20), for both the Delta-Eddington solar radiation and for the Monte Carlo. However,

the Delta-Eddington solar refraction does not trap sufficient radiation below the refractive

boundary, resulting in slightly higher albedos compared to the Monte Carlo. For the

standard position (top of the 3/4 layer, the third row of Table 20), the errors are order .01

absolute. Of course, as expected, when the refractive boundary is even deeper in the ice,

the effects of refraction on the albedo are reduced even more (first, second and fourth rows

of Table 20).
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Table 20. Spectral Radiative Model Comparisons: Delta-Eddington and Monte Carlo

Albedos. Diffuse incident radiation for bare sea ice with layer structure given in Table 1

and IOPs from Table 12. Refraction is either absent, or the refractive boundary (n = 1.31)

is placed at various interfaces as indicated. DE=Delta-Eddington; MC=Monte Carlo. The

Monte Carlo calculation also includes the effects of refraction, as indicated. Note that the

third row of results is the most applicable to sea ice as modeled in this work, as in Table

1. Sea ice thickness 1.5 m.

Type 0.2− 0.7µm 0.7 − 1.19µm 1.19− 5.0µm

No refraction

DE .781 .551 .100

MC .765 .556 .104

Refraction at top of 1/4

DE .682 .438 .117

MC .650 .410 .091

Refraction at top of 3/4

DE .754 .551 .100

MC .742 .558 .104

Refraction at top of 2

DE .777 .551 .100

MC .759 .557 .104

In summary, these comparisons show that the Delta-Eddington solar radiation is a good

approximation to the scattering and absorption of solar radiation in sea ice, even when

a refractive boundary is included below the surface scattering layer. The errors in the

spectral albedos are nearly always less than .01 absolute.
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6.3 Present Version of Solar Radiation in CCSM Sea Ice

In this subsection we compare albedos, absorption and transmission between the Delta-

Eddington solar radiation treatment and the present solar radiation scheme for sea ice

in CCSM3. The atmosphere radiation model and polar atmosphere profile used in this

comparison is presented in Appendix C. We use the atmosphere radiation model to provide

a self-consistent calculation of multiple scattering between the surface and atmosphere for

a typical polar atmosphere profile, both for clear and overcast sky.

We first consider several snow-overlying-sea ice cases, then thick bare sea ice and ponded

sea ice, as shown in Table 21. The broadband albedos shown in this table are determined

from the summed band absorbed fluxes (Eq. 56) and the summed band downward solar

fluxes (Eq. 1): αbb = 1− (FSW /FSWDN ). Broadband and spectral band albedos are compared

in Table 21. We include a range of snow grain radii in these comparisons, and note that the

Delta-Eddington solar radiation albedos bracket the CCSM3 albedos for non-melting and

melting snow. The bare sea ice Delta-Eddington albedos are larger than those of CCSM3,

while the ponded ice albedos are smaller.

Fig. 14 shows modeled and observed broadband albedo as a function of bare ice thickness.

Figs. 15 and 16 show modeled I0 (see Eqs. 13,14) and transmittance as functions of ice

thickness, respectively. The ice thicknesses less than 0.10 m are shown only to highlight

very thin ice thickness, as CCSM3 limits the ice to thicker than 0.10 m. Fig. 14 shows that

both CCSM3 and the Delta-Eddington solar radiation represent the albedo dependence

on ice thickness similarly given the limited data. Note that the Delta-Eddington thin ice

albedo asymptotes to 0.063, the diffuse Fresnel layer refraction albedo (see section 4.1),

a value also appropriate for the ocean. Thus, the thin ice refraction layer becomes that

for the ocean surface in the thin ice limit. The Delta-Eddington I0 values of Fig. 15 are

shown only for comparison with CCSM3, as they are not directly used in the solution, but

it does show how variable this quantity is and how poor an approximation is the constant

value of CCSM3. Notice how different the ice transmissions are between the two models

in Fig. 16. The Delta-Eddington solar radiation even allows some near-infrared radiation

to penetrate all the way through the thinnest ice to the underlying ocean, while CCSM3

allows no penetration beyond the surface layer. CCSM3 is less transmissive in the visible

than is the Delta-Eddington.

Table 22 and Figs. 17a-c compare internal sea ice and ocean absorption between Delta-

Eddington and CCSM3 for three ice thicknesses. Shown are computed fluxes for the

atmospheric profile and seasonal data presented in Appendix C. In general, the Delta-

Eddington absorbs less in the surface layer than CCSM3 and more in the ice and the

underlying ocean. This is particularly true for the thinnest ice.
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Table 21. Broadband and Spectral Delta-Eddington and CCSM3 Albedos for various

surface types. “bb” is broadband, “vs” visible and “ni” near-infrared. Atmosphere radia-

tion model and profile (Appendix C) has an overcast low stratus cloud. The solar zenith

angle is 60◦. The Delta-Eddington albedos are for diffuse incident radiation; DE=Delta-

Eddington, with hi=sea ice thickness, hp=pond depth and hs=snow depth. The ponded

ice albedos for CCSM3 were inferred from the grid box albedos assuming 30% coverage by

ponds. ×1 refers to the nominally 1◦ × 1◦ horizontal resolution of sea ice in CCSM3.

Type vs ni bb(overcast) bb(clear)

0.2 − 0.7µm 0.7 − 5.0µm 0.2− 5.0µm 0.2 − 5.0µm

Snow on Sea Ice

DE (rs = 50µm, hs = 0.3m) .985 .772 .910 .865

CCSM3 non-melting (×1) .946 .658 .848 .808

DE (rs = 500µm, hs = 0.3m) .948 .581 .830 .755

DE (rs = 1000µm, hs = 0.3m) .921 .509 .791 .710

CCSM3 melting (×1) .847 .513 .734 .686

DE (rs = 2500µm, hs = 0.3m) .869 .410 .726 .640

Bare Sea Ice

DE (hi = 1.5m) .754 .452 .647 .610

CCSM3 non-melting (×1) .73 .33 .595 .535

Pond on Sea Ice

DE (hp = 0.35m, hi = 1.5m) .274 .063 .192 .156

CCSM3 (see above) (×1) .48 .08 .345 .302

In addition to sea ice thickness, the sea ice albedo depends on snow depth, meltpond

depth, and solar zenith angle. None of these dependencies is in the present solar radiation

parameterization in CCSM3 (see section 2).

Fig. 18 shows the zenith angle dependence of broadband Delta-Eddington albedos for clear

sky conditions for snow, bare sea ice and pond (snow and pond completely cover sea ice).

Note that CCSM3 has no zenith angle dependence. The zenith angle dependencies range

from order .05 for snow, .10 for bare ice and .20 for pond, for low to moderately high sun

(µ0 = .68 is appropriate for local noon on summer solstice at latitude 67◦). Because the

low stratus cloud is optically thick (Appendix C), there is virtually no direct radiation for

this case, and thus this dependence is not realized for overcast sky.
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Table 22. Sea ice absorption: Delta-Eddington and CCSM3(x1), Wm−2. Total column

and by level. DE=Delta-Eddington. Atmospheric profile (Appendix C) has an overcast

low stratus cloud. The solar radiation zenith angle 60◦.

(a) Ice thickness 0.1 m. Downwelling surface solar radiation is 192.9 Wm−2, with visible

and near-infrared fractions .588 and .412 respectively for DE. αbb(DE)=0.242

Level DE vs CCSM3 vs DE ni CCSM3 ni DE bb CCSM3 bb

total 81.9 81.4 63.5 65.2 145.4 146.6

surface 0.1 24.4 17.0 65.2 17.1 89.6

1 0.8 2.0 13.2 0 14.0 2.0

2 0.9 1.9 10.1 0 11.0 1.9

3 0.8 1.8 7.0 0 7.8 1.8

4 33.0 1.8 4.8 0 37.8 1.8

ocn 46.7 49.5 11.5 0 58.2 49.5

(b) Ice thickness 1.0 m. Downwelling surface solar radiation is 258.7 Wm−2, with visible

and near-infrared fractions .636 and .364 respectively for DE. αbb(DE)=0.594

Level DE vs CCSM3 vs DE ni CCSM3 ni DE bb CCSM3 bb

total 50.8 46.5 54.0 58.5 104.8 105.3

surface 1.3 13.9 33.6 58.5 34.9 72.4

1 9.7 9.6 19.8 0 29.5 9.9

2 5.8 6.8 0.6 0 6.4 6.8

3 4.1 4.8 0 0 4.1 4.8

4 14.8 3.4 0 0 14.8 3.4

ocn 15.3 8.0 0 0 15.3 8.0

(c) Ice thickness 5.0 m. Downwelling surface solar radiation is 275.7 Wm−2, with visible

and near-infrared fractions .651 and .349 respectively for DE. αbb(DE)=0.658

Level DE vs CCSM3 vs DE ni CCSM3 ni DE bb CCSM3 bb

total 41.7 46.3 52.6 58.5 94.3 104.8

surface 2.2 13.9 39.6 58.5 41.8 72.4

1 34.2 26.8 13.0 0 47.2 26.8

2 3.5 4.7 0 0 3.5 4.7

3 1.1 0.8 0 0 1.1 0.8

4 0.5 0.1 0 0 0.5 0.1

ocn 0.2 0 0 0 0.2 0
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7. Summary

We have presented an alternate approach for calculating solar radiation in CCSM sea

ice. It is based on the Delta-Eddington solar radiation treatment of representing multiple

scattering (see Table 2). The Delta-Eddington solar radiation treatment allows surface

types of snow over sea ice, bare melting sea ice, and ponded ice. Our approach makes

use of inherent optical properties from equivalent ice spheres for snow, and from SHEBA

spectral surface albedo and physical ice measurements for sea ice. The SHEBA spectral

surface albedo measurements allow for characterization of variability in IOPs which can

be used in tuning procedures. Comparisons with SNICAR calculations for snow-over-sea

ice show that the Delta-Eddington solar radiation is a very good approximation for snow

radiative transfer, with albedo errors less than .01 absolute. Comparisons with benchmark

theoretical calculations which accurately resolve multiple scattering and the effects of re-

fraction show that the Delta-Eddington solar radiation is a good approximation for sea

ice radiative transfer, with albedo errors usually less than .02 absolute. Comparisons of

the Delta-Eddington solar radiation treatment with the present solar radiation parameter-

ization in CCSM3 sea ice illustrate the inaccuracies and limitations of the latter. These

comparisons show that, relative to the present solar radiation treatment in CCSM3 sea

ice, the Delta-Eddington solar radiation treatment produces less absorption near the sur-

face and more with depth. The response of the climate in CCSM3 to this solar radiation

treatment must await further development in the sea ice component of CCSM. Because of

their importance for solar radiation reflection and absorption in sea ice, developments in

snow modeling to allow prognostic snow density and grain size in a multi-layer parameter-

ization, and in meltpond modeling to allow prognostic pond fraction and depth, are key.

New developments in these areas, in combination with the Delta-Eddington solar radia-

tion treatment, should result in significant improvements in the modeling of the snow/sea

ice albedo feedback in CCSM. The Delta-Eddington solar radiation treatment also allows

incorporation of additional absorbers, such as carbon soot.

It is concluded that using the Delta-Eddington solar radiation treatment in place of the

present parameterization in CCSM sea ice would result in a significant improvement in

sea ice solar radiation accuracy, consistency and generality. We strongly hope that this

treatment will be included in future versions of CCSM sea ice. It could also be applied

profitably to other sea ice models as well.
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Appendix A: Delta-Eddington Solution for a Single Layer

We present here the detailed solution of the scaled, direct/diffuse split radiative transfer

equation (Eq. 47) that leads to the reflectivities and transmissivities in Eqs. 50.

Consider a homogeneous plane-parallel layer of scaled optical depth τ ∗
0 , single scattering

albedo ω∗ < 1 and asymmetry parameter g∗. Optical depth is taken as τ∗ = 0 at top and

τ∗ = τ∗
0 at bottom. Angles are referred against the normal to the layer, with cosine zenith

angle µ = −1 vertically upwards, and µ = +1 vertically downwards. We consider the layer

to have index of refraction n > 1 and to be embedded within a medium of the same index

of refraction, so refraction effects at the boundaries can be ignored.

The boundary conditions are no upwelling direct or diffuse fluxes at the bottom, but

incident direct solar radiation flux at the top of πF0µ0n where µ0n > 0 is the cosine of the

solar zenith angle in the medium, and incident diffuse flux at the top Ftop. The scaled,

direct/diffuse split radiative transfer equation to be solved is:

µ
dI

dτ∗
+ I =

ω∗

2

∫ +1

−1

(1 + 3g∗µµ′)I dµ′ +
ω∗F0

4
(1 + 3g∗µ0nµ) e−τ∗/µ0n (A1)

We invoke the Eddington approximation: I = I0 + µI1, where I0 is the mean intensity, and

and I1 is three times the mean flux:

I0 =
1

4π

∫

4π

I dΩ =
1

2

∫ +1

−1

I(µ) dµ

I1 =
3

4π

∫

4π

µI dΩ =
3

2

∫ +1

−1

µI(µ) dµ

(A2)

Thus, Eq. A1 can be written:

µ
dI0

dτ∗
+ µ2 dI1

dτ∗
+ I0 + µI1 = ω∗I0 + ω∗g∗µI1 +

ω∗F0

4
(1 + 3g∗µ0nµ) e−τ∗/µ0n

or

µ{ dI0

dτ∗
+ (1 − ω∗g∗)I1} + µ2 dI1

dτ∗
+ (1 − ω∗)I0 =

ω∗F0

4
(1 + 3g∗µ0nµ) e−τ∗/µ0n (A3)

Using the integrals:

∫ +1

−1

dµ = 2

∫ +1

−1

µ dµ = 0

∫ +1

−1

µ2 dµ = 2/3

∫ +1

−1

µ3 dµ = 0 (A4)

we separate the transfer equation by taking moments
∫ +1

−1
dµ and

∫ +1

−1
µ dµ :

dI1

dτ∗
+ 3(1− ω∗)I0 =

3

4
ω∗F0e

−τ∗/µ0n

dI0

dτ∗
+ (1 − ω∗g∗)I1 =

3

4
ω∗g∗µ0nF0e

−τ∗/µ0n

(A5)

For convenience in applying flux boundary conditions, we transform these transfer equa-

tions into flux forms. The downward and upward diffuse fluxes, F ↓ and F ↑ respectively,
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can be written:

F ↓ = 2π

∫ +1

0

µI dµ = 2π

∫ +1

0

µ(I0 + µI1) dµ = πI0 +
2π

3
I1

F ↑ = 2π

∫ −1

0

µI dµ = 2π

∫ −1

0

µ(I0 + µI1) dµ = πI0 −
2π

3
I1

(A6)

We define the functions G and H by:

G = πI0

H =
2π

3
I1

(A7)

so that the downward and upward diffuse fluxes can be expressed by:

F ↓ = G + H

F ↑ = G − H
(A8)

Using the definitions of G and H, the transfer equations A5 become:

dH

dτ∗
+ 2(1 − ω∗)G =

1

2
ω∗Se−τ∗/µ0n

dG

dτ∗
+

3

2
(1 − ω∗g∗)H =

3

4
ω∗g∗µ0nSe−τ∗/µ0n

(A9)

where S = πF0. These are two first-order coupled ordinary differential equations for the

unknown functions H = H(τ∗) and G = G(τ∗). Taking the optical depth derivatives of these

two equations and eliminating the first-order derivative terms results in:

d2H

dτ∗2
− 3(1 − ω∗)(1 − ω∗g∗)H = − 1

2
ω∗S{ 1

µ0n
+ 3g∗µ0n(1 − ω∗)}e−τ∗/µ0n

d2G

dτ∗2
− 3(1 − ω∗)(1 − ω∗g∗)G = − 3

4
ω∗S{1 + g∗(1 − ω∗)}e−τ∗/µ0n

(A10)

Let

λ2 = 3(1 − ω∗)(1 − ω∗g∗) α =
3
4
ω∗S{1 + g∗(1 − ω∗)}

1
µ2

0n

− λ2
β =

1
2
ω∗S{ 1

µ0n
+ 3g∗µ0n(1 − ω∗)}
1

µ2

0n

− λ2
(A11)

so the second-order transfer equations can be written concisely as:

d2H

dτ∗2
− λ2H = − (

1

µ2
0n

− λ2)αe−τ∗/µ0n

d2G

dτ∗2
− λ2G = − (

1

µ2
0n

− λ2)βe−τ∗/µ0n

(A12)

where the definitions of α and β allow for solutions to the inhomogeneous equations. For

the homogeneous equations (i.e. α = β = 0), C1e
+λτ∗

+ C2e
−λτ∗

is a solution for G, where C1

and C2 are constants to be determined by the boundary conditions. Using the first-order

equation for G implies that the solution for H is −PC1e
+λτ∗

+PC2e
−λτ∗

where P is a constant.

Thus, the combined homogeneous and inhomogeneous solutions are:

G(τ∗) = C1e
+λτ∗

+ C2e
−λτ∗ − αe−τ∗/µ0n

H(τ∗) = − PC1e
+λτ∗

+ PC2e
−λτ∗ − βe−τ∗/µ0n

P =
2

3

λ

1 − ω∗g∗

(A13)
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Using Eqs. A8 for the downward and upward diffuse fluxes, we can write the solutions:

F ↓ = G + H = C1(1 − P )e+λτ∗

+ C2(1 + P )e−λτ∗ − αe−τ∗/µ0n − βe−τ∗/µ0n

F ↑ = G − H = C1(1 + P )e+λτ∗

+ C2(1 − P )e−λτ∗ − αe−τ∗/µ0n + βe−τ∗/µ0n

(A14)

Consider first the case of incident direct solar radiation from above, but no incident diffuse

fluxes. The boundary conditions for the diffuse fluxes F ↓(τ∗) and F ↑(τ∗) are:

F ↓(0) = G(0) + H(0) = 0 F ↑(τ∗
0 ) = G(τ∗

0 ) − H(τ∗
0 ) = 0 (A15)

resulting in the coupled equations:

C1(1 − P ) + C2(1 + P ) − α − β = 0

C1(1 + P )e+λτ∗

0 + C2(1 − P )e−λτ∗

0 − αe−τ∗

0
/µ0n + βe−τ∗

0
/µ0n = 0

(A16)

or
(

1 − P 1 + P
(1 + P )e+λτ∗

0 (1 − P )e−λτ∗

0

) (

C1

C2

)

=

(

α + β
(α − β)e−τ∗

0
/µ0n

)

(A17)

The solutions to these coupled equations are:

C1 =

∣

∣

∣

∣

α + β 1 + P
(α − β)e−τ∗

0
/µ0n (1 − P )e−λτ∗

0

∣

∣

∣

∣

/D

=
{

(α + β)(1 − P )e−λτ∗

0 − (1 + P )(α − β)e−τ∗

0
/µ0n

}

/D

(A18)

C2 =

∣

∣

∣

∣

1 − P α + β
(1 + P )e+λτ∗

0 (α − β)e−τ∗

0
/µ0n

∣

∣

∣

∣

/D

=
{

(1 − P )(α − β)e−τ∗

0
/µ0n − (α + β)(1 + P )e+λτ∗

0

}

/D

(A19)

D = (1 − P )2 e−λτ∗

0 − (1 + P )2 e+λτ∗

0 (A20)

Consider the reflectivity to direct solar radiation at τ ∗ = 0:

R(µ0n) =
F ↑(0)

πF0µ0n
=

G(0) − H(0)

πF0µ0n
=

C1(1 + P ) + C2(1 − P ) − α + β

Sµ0n

or
R(µ0n) =

1

Sµ0nD

{

(α + β)(1 − P )(1 + P )e−λτ∗

0 − (1 + P )2(α − β)e−τ∗

0
/µ0n

}

+
1

Sµ0nD

{

(1 − P )2(α − β)e−τ∗

0
/µ0n − (α + β)(1 − P )(1 + P )e+λτ∗

0

}

− 1

Sµ0n
(α − β)

(A21)

Collecting terms in α + β and α − β :

R(µ0n) =
1

Sµ0nD

{

(α − β)
[

(1 − P )2 − (1 + P )2
]

e−τ∗

0
/µ0n

}

+
1

Sµ0nD

{

(α + β)
[

(P + 1)(P − 1)e+λτ∗

0 − (P + 1)(P − 1)e−λτ∗

0

]}

− 1

Sµ0n
(α − β)

(A22)
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To facilitate comparison with Coakley et al. (1983), we define:

u = 1/P

α = α/Sµ0n

γ = β/Sµ0n

N = − u2D = (u + 1)2e+λτ∗

0 − (u − 1)2e−λτ∗

0

(A23)

Substituting into Eq. A22 we finally get:

R(µ0n) = (α − γ)(4u/N)e−τ∗

0
/µ0n + (α + γ)(u + 1)(u − 1)

[

e+λτ∗

0 − e−λτ∗

0

]

/N − (α − γ)

α =
3

4
ω∗µ0n

(

1 + g∗(1 − ω∗)

1 − λ2µ2
0n

)

γ =
1

2
ω∗

(

1 + 3g∗(1 − ω∗)µ2
0n

1 − λ2µ2
0n

)

N = (u + 1)2e+λτ∗

0 − (u − 1)2e−λτ∗

0

u =
3

2

(

1 − ω∗g∗

λ

)

λ =
√

3(1− ω∗)(1 − ω∗g∗)

(A24)

Consider the total transmissivity (i.e. both diffuse and direct) to direct solar radiation at

τ∗ = τ∗
0 :

T (µ0n) =
F ↓(τ∗

0 )

πF0µ0n
+ e−τ∗

0
/µ0n =

G(τ∗
0 ) + H(τ∗

0 )

πF0µ0n
+ e−τ∗

0
/µ0n

=
1

Sµ0nD

[

C1(1 − P )e+λτ∗

0 + C2(1 + P )e−λτ∗

0 − αe−τ∗

0
/µ0n − βe−τ∗

0
/µ0n

]

+ e−τ∗

0
/µ0n

=
1

Sµ0nD

[

(1 − P )2(α + β) − (α − β)(1 + P )(1 − P )e−τ∗

0
/µ0ne+λτ∗

0

]

+
1

Sµ0nD

[

(1 − P )(α − β)(1 + P )e−τ∗

0
/µ0ne−λτ∗

0 − (α + β)(1 + P )2
]

− 1

Sµ0nD

[

(α + β)e−τ∗

0
/µ0n

]

+ e−τ∗

0
/µ0n

(A25)

Making the substitutions in Eqs. A23 and rearranging yields:

T (µ0n) = (α + γ)(4u/N) + (α − γ)

[

(u + 1)(u − 1)(e+λτ∗

0 − e−λτ∗

0 )

N

]

e−τ∗

0
/µ0n

− (α + γ − 1)e−τ∗

0
/µ0n

(A26)

Now consider the case of diffuse incident flux. Then, F0 = 0 for the direct solar radiation

term, so that α = β = 0. The boundary conditions are Ftop from above and no flux from

below. The coupled equations are:

C1(1 − P ) + C2(1 + P ) = Ftop

C1(1 + P )e+λτ∗

0 + C2(1 − P )e−λτ∗

0 = 0
(A27)

or
(

1 − P 1 + P
(1 + P )e+λτ∗

0 (1 − P )e−λτ∗

0

) (

C1

C2

)

=

(

Ftop

0

)

(A28)
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The solutions are:

C1 =

∣

∣

∣

∣

Ftop 1 + P
0 (1 − P )e−λτ∗

0

∣

∣

∣

∣

/D = Ftop(1 − P )e−λτ∗

0 /D

C2 =

∣

∣

∣

∣

1 − P Ftop

(1 + P )e+λτ∗

0 0

∣

∣

∣

∣

/D = −Ftop(1 + P )e+λτ∗

0 /D

(A29)

The diffuse reflectivity is:

R =
F ↑(0)

Ftop
=

G(0) − H(0)

Ftop
=

C1(1 + P ) + C2(1 − P )

Ftop

=
[

(1 − P )(1 + P )e−λτ∗

0 − (1 + P )(1 − P )e+λτ∗

0

]

/D

=
[

(u + 1)(u − 1)(e+λτ∗

0 − e−λτ∗

0 )
]

/N

(A30)

The diffuse transmissivity is:

T =
F ↓(τ∗

0 )

Ftop
=

G(τ∗
0 ) + H(τ∗

0 )

Ftop
=

C1(1 − P )e+λτ∗

0 + C2(1 + P )e−λτ∗

0

Ftop

= (1 − P )2/D − (1 + P )2/D

= 4u/N

(A31)

using the substitutions from Eqs. A23.

Examination of Eq. A30 for the diffuse albedo shows that if u < 1 then R will be negative

(see Wiscombe and Warren, 1980). This occurs for strongly absorbing/scattering condi-

tions of interest in the near-infrared. Simply setting R < 0 diffuse reflectivities to 0 will

bias the albedos low. Therefore, we perform a gaussian integration over angle of the pos-

itive definite reflectivity and transmissivity of Eqs. A24 and A25 respectively (assuming

isotropic incident radiation):

R = 2

∫ +1

0

µR(µ) dµ

T = 2

∫ +1

0

µT (µ) dµ

(A32)

Numerical experimentation shows that using 8 or more gaussian integration angles (e.g. 8

in the downwards hemisphere) results in an integration error less than .001. If necessary

for numerical efficiency, 4 angles can be used but the integration errors increase to order

.003. We chose 8 angles listed in Table A.
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Table A. Gaussian Angles and Weights. Angles are given as cosine of zenith angle µ.

number µ weight

1 .9894009 .0271525

2 .9445750 .0622535

3 .8656312 .0951585

4 .7554044 .1246290

5 .6178762 .1495960

6 .4580168 .1691565

7 .2816036 .1826034

8 .0950125 .1894506

Note that a numerical integration of µ from 0 to 1 using the angles and weights in Table A

yields .5015 (exact value .5000), showing that 8 angles gives accuracy in numerical integration

of a few parts per thousand.

To summarize, we present the direct and diffuse reflectivities and transmissivities:

R(µ0n) = (α − γ)(4u/N)e−τ∗

0
/µ0n + (α + γ)(u + 1)(u − 1)

[

e+λτ∗

0 − e−λτ∗

0

]

/N − (α − γ)

T (µ0n) = (α + γ)(4u/N) + (α − γ)

[

(u + 1)(u − 1)(e+λτ∗

0 − e−λτ∗

0 )

N

]

e−τ∗

0
/µ0n

− (α + γ − 1)e−τ∗

0
/µ0n

R = 2

∫ +1

0

µR(µ) dµ

T = 2

∫ +1

0

µT (µ) dµ

α =
3

4
ω∗µ0n

(

1 + g∗(1 − ω∗)

1 − λ2µ2
0n

)

γ =
1

2
ω∗

(

1 + 3g∗(1 − ω∗)µ2
0n

1 − λ2µ2
0n

)

N = (u + 1)2eλτ∗

0 − (u − 1)2e−λτ∗

0

u =
3

2

(

1 − ω∗g∗

λ

)

λ =
√

3(1 − ω∗)(1 − ω∗g∗)

(A33)

Note that α and γ have a singularity at λ = 1/µ0n. For low precision machines (32bit) it is

possible that this condition will occur for an integration with diurnal cycle (i.e. varying

µ0n). To insure against this, a small ε can be included, as 1 − λ2µ2
0n + ε, with ε ∼ 10−5, so

that the solutions will be smooth across the singularity.
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Appendix B: Solution for Multiple Layers

Appendix A presented the Delta-Eddington solution for a single layer; here we treat the

multiple scattering solution between layers.

To combine apparent optical properties (AOPs) of two or more layers, we follow Coakley

et al. (1983). Essentially, direct radiation once scattered within a layer (Appendix A)

is assumed, upon exiting the layer, to be diffuse and isotropic over the hemisphere into

which it is directed. We first treat the case of two layers which do not include a refractive

boundary. Consider that layer 1 (with AOPs [R1(µ0) T1(µ0) R1 T 1]) overlies layer 2 (with

AOPs [R2(µ0) T2(µ0) R2 T 2]), where µ0 is the cosine zenith angle of the direct solar beam.

Let [R12(µ0),T12(µ0),R12, T 12] be the AOPs for the combined layers. Note that the order 12

is important, signifying reflectivities and transmissivities due to radiation from above the

combined layers, i.e. so layer 1 is encountered first. Let τ ∗
1 be the scaled optical depth

of layer 1, and let the normalized diffuse upward and downward fluxes at the interface

between layers be D↑ and D↓ respectively. For direct flux incident at cosine zenith angle

µ0 from above, normalized to 1 at the top interface of layer 1, and no incident diffuse flux,

applying flux continuity at the interfaces we have:

R12(µ0) = R1(µ0) + D↑T 1

D↑ = D↓R2 + e−τ∗

1
/µ0R2(µ0)

D↓ = D↑R1 + (T1(µ0) − e−τ∗

1
/µ0)

T12(µ0) = e−τ∗

1
/µ0T2(µ0) + D↓T 2

(B1)

These equations can be understood term by term. The combined reflectivity of the two

layers (1 over 2) to direct radiation from above at cosine zenith angle µ0 (R12(µ0)) is the

direct reflectivity of layer 1 (R1(µ0)) plus the upward diffuse flux at the interface between the

two layers (D↑) times the diffuse transmissivity of layer 1 (T 1). The upward diffuse flux at

the interface between layers (D↑) is the downward diffuse flux at the interface (D↓) times the

reflectivity of layer 2 to diffuse radiation (R2) plus the direct beam through layer 1 (e−τ∗

1
/µ0)

times the reflectivity of layer 2 to direct radiation (R2(µ0)). The downward diffuse flux at

the interface between layers (D↓) is the upward diffuse flux at the interface (D↑) times the

reflectivity of layer 1 to diffuse radiation (R1) plus the diffuse portion of the direct beam

transmitted through layer 1 (T1(µ0)− e−τ∗

1
/µ0). We note that T1(µ0) is the total transmission

of the direct beam through layer 1, so if we subtract the direct beam e−τ∗

1
/µ0 , the result

is the diffusely transmitted flux (see Eq. A25). Finally, the combined transmissivity of

the two layers (1 over 2) to direct radiation from above at cosine zenith angle µ0 (T12(µ0))

is the direct beam that transmits layer 1 (e−τ∗

1
/µ0) times the total transmissivity of layer

2 (T2(µ0)) plus the downward diffuse flux at the interface (D↓) times the transmissivity of

layer 2 to diffuse radiation (T 2).

We can eliminate the upward diffuse flux D↑ in the first equation of Eq. B1 using the

second and third equations to first eliminate D↓, yielding the combined reflectivity R12(µ0).
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Similarly, we can eliminate the down diffuse flux D↓ in the fourth equation of Eq. B1 using

the second and third equations to first eliminate D↑, yielding the combined transmissivity

T12(µ0). The resulting equations for the combined reflectivity and transmissivity to direct

radiation are:

R12(µ0) = R1(µ0) +
{(T1(µ0) − e−τ∗

1
/µ0)R2 + e−τ∗

1
/µ0R2(µ0)}T 1

1 − R1R2

T12(µ0) = e−τ∗

1
/µ0T2(µ0) +

{(T1(µ0) − e−τ∗

1
/µ0) + e−τ∗

1
/µ0R2(µ0)R1}T 2

1 − R1R2

(B2)

We can interpret the denominator term 1−R1R2 as a series of multiple interlayer scatterings

of successively higher orders using the binomial expansion: (1 − x)−1 = 1 + x − x2 + x3 − x4...

valid for x < 1. Thus, all orders of multiple scatterings between layers are accounted for.

Similarly, for the case of diffuse downward flux at the top of the two layers, normalized to

1 at the top of layer 1, the combined reflectivity and transmissivity are:

R12 = R1 + D↑T 1

D↑ = D↓R2

D↓ = D↑R1 + T 1

T 12 = D↓T 2

(B3)

Note that in Eq. B3 the interface diffuse fluxes D↑ and D↓ are different than those in

Eq. B1. In Eq. B1 these diffuse fluxes are due to multiple scattering from the direct

beam source at the top, whereas here they are due to multiple scattering of a diffuse beam

source at the top. These equations can also be understood term by term. The combined

reflectivity of the two layers (1 over 2) to diffuse radiation from above (R12) is the diffuse

reflectivity of layer 1 (R1) plus the upward diffuse flux at the interface between the two

layers (D↑) times the diffuse transmissivity of layer 1 (T 1). The upward diffuse flux at the

interface between layers (D↑) is the downward diffuse flux at the interface (D↓) times the

reflectivity of layer 2 to diffuse radiation (R2). The downward diffuse flux at the interface

between layers (D↓) is the upward diffuse flux at the interface (D↑) times the reflectivity of

layer 1 to diffuse radiation (R1) plus the diffuse radiation transmitted through layer 1 (T 1).

Finally, the combined transmissivity of the two layers (1 over 2) to diffuse radiation from

above (T 12) is the downward diffuse flux at the interface (D↓) times the transmissivity of

layer 2 to diffuse radiation (T 2).

We can eliminate the upward diffuse flux D↑ in the first equation of Eq. B3 using the

second and third equations to first eliminate D↓, yielding the combined reflectivity R12.

Similarly, we can eliminate the down diffuse flux D↓ in the fourth equation of Eq. B3 using

the second and third equations to first eliminate D↑, yielding the combined transmissivity

T 12. The resulting equations for the combined reflectivity and transmissivity to diffuse
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radiation from above are:

R12 = R1 +
T 1R2T 1

1 − R1R2

T 12 =
T 1T 2

1 − R1R2

(B4)

We also need the combined reflectivity and transmissivity to diffuse radiation from below.

We note that if the order 1 over 2 in Eqs. B4 is reversed to 2 over 1, then top becomes

bottom, and we can immediately write the combined reflectivity and transmissivity to

diffuse radiation from below:

R21 = R2 +
T 2R1T 2

1 − R2R1

T 21 =
T 2T 1

1 − R2R1

(B5)

Note that for the combined transmissivities to diffuse radiation, T 12 = T 21, but for the

combined reflectivities to diffuse radiation, R12 6= R21 in general. Thus the combined AOPs

depend on whether we consider radiation incident from above layer 1 or below layer 2.

Such a combined two layer system is said to be “inhomogeneous” for AOPs as opposed to

the individual layers which are said to be “homogeneous” for AOPs.

To combine several layers together, two passes are made through the layers: one starting

from the top and proceeding down, the other starting at the bottom surface and proceeding

up. In passing from the top down, we make the following approximation. If the total

transmission to either direct radiation (e.g. T12(µ0) for a two layer system) or diffuse

radiation (e.g. T 12 for a two layer system) is less than a small adjustable value (typically

.001), AOPs for lower layers are not computed. In passing from the bottom up, we assume

non-zero values of ocean reflectivities but zero transmissivities at the ocean/ice interface.

Once the entire column has been combined, we have at all interfaces between layers:

e−τ∗/µ0 , the direct beam transmission from the top, with τ ∗ the scaled optical depth from

top to the interface, Rup(µ0), the reflectivity to direct solar radiation of the entire column

below, Tdn(µ0), the total transmission (i.e. both direct and diffuse) to direct solar radiation

incident at the top to the interface, Rup, the reflectivity of the column below the interface

to diffuse radiation from above, Rdn, the reflectivity of the column above the interface to

diffuse radiation from below, and T dn the transmissivity of the column above the interface

to diffuse radiation from above.

Using the interface reflectivities and transmissivities, we can write down the normalized
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upward and downward fluxes to both incident direct and diffuse radiation:

Fdrdn = e−τ∗/µ0 +
(Tdn(µ0) − e−τ∗/µ0) + e−τ∗/µ0Rup(µ0)Rdn

1 − RdnRup

Fdrup =
e−τ∗/µ0Rup(µ0) + (Tdn(µ0) − e−τ∗/µ0)Rup

1 − RdnRup

Fdfdn =
T dn

1 − RdnRup

Fdfup =
T dnRup

1 − RdnRup

(B6)

The various terms in the fluxes can be interpreted from ray-tracing arguments. Consider

Fdrdn first. The first term is the direct beam transmission. The next term is the diffusely

transmitted radiation through the entire atmosphere above the interface. The last term is

the directly transmitted radiation reflected by the entire system below the interface and in

turn reflected back down by the entire atmosphere above the interface. The denominator

accounts for all orders of multiple diffuse reflections at the interface. Next consider Fdrup.

The first term in the numerator is direct beam transmission that reflects off of the entire

system below the interface; the second term is the diffusely transmitted radiation through

the entire atmosphere above the interface (total transmission minus the direct beam trans-

mission) that reflects off of the entire system below the interface. Again, the denominator

accounts for all orders of multiple diffuse reflections at the interface. The diffuse fluxes

Fdfdn and Fdfup should be self-evident at this point.

We note a couple of interesting features of these flux expressions. If the optical depth above

the interface for the direct solar beam is very large, i.e. if τ ∗ >> 1, then e−τ∗/µ0 << 1 and the

two fluxes for the direct beam become identical to their respective diffuse fluxes. If there is

no zenith angle dependence of the reflectivity, i.e. if Rup(µ0) = Rup, then the direct fluxes also

reduce to the diffuse fluxes. Finally, by separating the direct and diffuse contributions to

the downward flux, and multiplying the appropriate terms by the appropriate reflectivity,

one can derive Fdrup from Fdrdn.

Eqs. B1 through B6 are valid only for layers with the same index of refraction, in other

words, above and below the refractive boundary (section 4.1). To include the refractive

boundary, we use Eqs. 21 and 25 to define the reflectivities and transmissivities of the

refractive boundary to direct and diffuse radiation, respectively. Consider the refractive

boundary as a pseudo-layer at the top of a layer of index of refraction n, such as that for

the DL (see Table 1 and Fig. 1). We combine the refractive boundary to the rest of the

DL using Eqs. B2, being careful to distinguish upward and downward diffuse reflectivities

and transmissivities in the refractive boundary (e.g. Eq. 25), where we substitute “f”

for 1 (referring to the Fresnel layer, i.e. the refractive boundary), yielding the combined
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formulas:

Rf2(µ0) = Rf (µ0) +
Tf (µ0)R2(µ0n)T fb

1 − RfbR2

Tf2(µ0) = Tf (µ0)T2(µ0n) +
{Tf (µ0)R2(µ0n)Rfb}T 2

1 − RfbR2

(B7)

Note very carefully that the direct beam cosine zenith angle µ0 is distinguished above the

refractive boundary (i.e. in the Rf and Tf terms) from below the refractive boundary where

the angle is µ0n (e.g. Eq. 20 and the terms R2(µ0n) and T2(µ0n)). Note also that there is

no “scattering” of radiation passing through the refractive boundary, so there is no term

T1(µ0) − e−τ∗

1
/µ0 as in Eqs. B2; here this term is zero.

We can generalize the combination formulas in Eqs. B2 and those for the fluxes in Eqs.

B6 by redefining the direct beam radiation as:

Tdrs(µ0, τa + τb) = e−τ∗

a
/µ0Tf (µ0)e

−τ∗

b
/µ0n (B8)

where subscript s refers to the direct solar beam, τ ∗
a is the scaled optical depth from the top

interface down to the refractive boundary, τ ∗
b is the scaled optical depth from the refractive

boundary to the interface below the refractive boundary. This equation clearly shows how

the direct beam is refracted and continues into the lower medium at the refracted angle,

and how the refractive boundary reduces the direct beam passing through it.

We apply Eqs. B4 for the combined reflectivity and transmissivity to diffuse radiation

from above, yielding the equations:

Rf2 = Rfa +
T faR2T fb

1 − RfbR2

T f2 =
T faT 2

1 − RfbR2

(B9)

We again need the combined reflectivity and transmissivity to diffuse radiation from below.

We note that if the order f over 2 in Eqs. B4 is reversed to 2 over f, then top becomes

bottom, and we can immediately write the combined reflectivity and transmissivity to

diffuse radiation from below:

R2f = R2 +
T 2RfbT 2

1 − R2Rfb

T 2f =
T 2T fb

1 − R2Rfb

(B10)

Note that in contrast to Eqs. B4 and B5, the combined transmissivities T f2 and T 2f are

not equal in general.
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Appendix C: Atmosphere Radiation Model

We use the solar radiation model of CCM3 (Kiehl et al. 1996; based on Briegleb 1992). This

radiation model is the basis for that in CCSM3 (Collins et al. 2004). The latter includes

detailed aerosols and a sophisticated cloud overlap scheme, but the basic physics is the

same. Thus, for the purposes of providing surface spectral band direct and diffuse fluxes

required by the Delta-Eddington solar radiation treatment for both clear and overcast skies,

in the same wave bands and using the same radiative transfer technique as in CCSM3,

the CCM3 column (i.e. one dimensional) radiation model is adequate. We give a brief

overview of this model.

The solar radiation spectrum is divided into 18 discrete spectral intervals, for each of which

the solar irradiance fraction is specified: 7 intervals for O3 for wavelengths 0.20− 0.35µm, 1

interval for the visible wavelengths 0.35−0.70µm, 7 intervals for the H2O bands 0.70−5.00µm,

and 3 intervals for the CO2 2.7µm and 4.3µm bands. Absorption by O2 is also included in

the visible and near-infrared. A background boundary layer aerosol is included for the

lowest three atmospheric layers with visible optical depth 0.12. Cloud scattering depends

on phase (liquid or ice), spectral band, particle effective radius and cloud water path.

Cloud particles are assumed to be liquid droplets for temperatures greater than −10◦C.

The atmospheric column is divided into 18 horizontally and vertically homogeneous lay-

ers, each of which is a well-mixed combination of several radiatively active constituents.

The Delta-Eddington solution for each of these layers is evaluated and then combined

together, subject to specified cosine solar zenith angle and surface spectral direct/diffuse

reflectivities. Thus, the method is very similar to the one used in this report.

For solar radiation top-of-atmosphere flux we specify 20 May at 80◦ north latitude for

overcast conditions. For clear sky we use a latitude of 67◦ and summer solstice conditions

to increase solar zenith angle range (e.g. Fig. 18). For this clear sky Arctic circle case,

cosine solar zenith angle varies from 0.01 (about 0.5◦ solar elevation) to 0.72 (about 47◦

solar elevation, appropriate for local noon near solstice at the Arctic circle).

The profile is modified from an original sub-arctic profile (McClatchey et al. 1972). Layers

have the specified mid-layer pressure (P) and temperature T, and are bounded by interfaces

with mean adjacent-layer pressures. CO2 is uniformly mixed at 370 × 10−6 volume mixing

ratio. Cloud cover (CC) is removed for clear sky conditions with no changes to the rest of

the profile. Cloud particles are assumed to be liquid droplets with 7µm effective radius, in

keeping with Jin et al. (1994); CCM3 radiation assumes liquid droplets for T > −10◦C. CP

is cloud path (liquid water), the mass path for cloud droplets in the specified atmospheric

layer. The cloud level (∼ 930 hPa), is taken from Jin et al. (1994). “srf” refers to the

surface air level at nominally 2 m, and “grnd” to the physical snow/ice/pond surface. The

profile is shown in Table C.
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Table C. Polar Atmosphere Profile. Mid-layer pressure P, temperature T, water vapor

specific humidity H2O, ozone mass mixing ratio O3, cloud cover (fraction) CC, cloud liquid

water path CP. “srf” is 2 m above surface, and “grnd” is the physical surface.

layer P(hPa) T(K) H2O(g/g) O3(g/g) CC CP(g/m2)

18 2 273 4.0x10−6 7.0x10−6 0 0

17 5 251 4.0x10−6 1.3x10−5 0 0

16 15 234 4.0x10−6 1.0x10−5 0 0

15 35 226 4.0x10−6 5.5x10−6 0 0

14 60 225 4.0x10−6 4.2x10−6 0 0

13 105 225 4.0x10−6 2.2x10−6 0 0

12 160 225 6.4x10−6 1.0x10−6 0 0

11 235 225 2.6x10−5 5.0x10−7 0 0

10 320 234 1.2x10−4 2.0x10−7 0 0

9 420 247 5.2x10−4 1.4x10−7 0 0

8 520 257 1.1x10−3 1.0x10−7 0 0

7 610 265 2.0x10−3 8.0x10−8 0 0

6 710 272 3.1x10−3 7.0x10−8 0 0

5 800 277 4.2x10−3 6.0x10−8 0 0

4 870 280 5.1x10−3 5.5x10−8 0 0

3 930 281 5.9x10−3 5.0x10−8 −−1−− 60

2 970 278 4.0x10−3 4.5x10−8 0 0

1 1000 276 3.0x10−3 4.0x10−8 0 0

srf 1008 273 3.0x10−3 4.0x10−8 0 0

grnd 1010 273 −−− −−− −−− −−−
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Appendix D: Variable Number of Snow and Sea Ice Layers

The number of snow and sea ice layers in this work, namely one for snow and four for

sea ice, was determined by the present version of CCSM sea ice. For many applications

however, a different number of snow and sea ice layers may be desired. In this appendix, we

discuss briefly how the Delta-Eddington solar radiation treatment generalizes to variable

number of snow and sea ice layers. The case for multiple pond layers over sea ice would

be similar to that for multiple snow layers.

Variable Number of Snow Layers

An extension to multiple snow layers is straightforward using the band data in Tables 4 to

7. Given the grain radius and snow density, snow extinction coefficients for each snow layer

can be evaluated from Eq. 68, and any dust or carbon soot (or other) impurities included

through Eqs. 69 and 70. With the addition of snow layer thickness, individual snow layer

reflectivities and transmissivities can be computed as in Eqs. 50 and combined with one

another and with the underlying sea ice layers using the multiple scattering formalism in

section 4.4 .

One remaining issue is how to represent surface absorption when two or more snow layers

overlie sea ice (see section 4.5). For one snow layer in the present version of CCSM sea ice,

all solar absorption above the sea ice refractive boundary should be included in the surface

absorption if snow has zero heat capacity (see section 3 and Table 1). This approach yields

a smooth transition between snow/ice and ice surface absorption as snow thickness tends to

zero. In this case the optical thinning of the snow allows most solar radiation to penetrate

the snow layer and be absorbed in the sea ice surface scattering layer, which is physically

realistic. Surface absorbed solar radiation would first be used to melt the thin snow layer

in the present sea ice thermodynamics, even though such absorption includes that of the

sea ice SSL, but the close thermal contact of a thin snow layer and the sea ice SSL makes

this approximation acceptable. When the snow layer is thick, most of the solar absorption

occurs in the snow layer because of its large optical thickness, so the approximation of

including all solar absorption above the refractive boundary as thermodynamic surface

absorption remains valid. We note again that this approach assumes snow and pond have

zero heat capacity, i.e. they have no internal absorption, and is the case for the present

CCSM sea ice model (see Briegleb et al. 2004).

However, if snow has finite heat capacity for one or more layers, how is surface absorption

to be represented, as opposed to internal snow layer absorption? How is this surface

absorption to depend on the thickness of the snow layers? A reasonable solution is to

include a “snow SSL” analogous to that for bare sea ice, and thus sub-divide the top

snow layer for the radiative transfer calculation. This is the approach we took in the

Delta-Eddington solar radiation treatment presented in this work. Similarly to sea ice (see
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top of p.10) we note that for the snow thermal conductivity, density and heat capacity

identical to sea ice (Briegleb et al. 2004), the thermal penetration depth for one hour flux

exchange is .04 m, consistent with near surface absorption of solar radiation. For example,

one can choose a fixed snow surface scattering layer thickness of .04 m say, and include all

absorption in this layer for the surface as we have done here. When the top snow layer

thickness becomes less than .08 m, one can set this snow SSL thickness equal to half the top

snow layer thickness. As the total snow layer thickness thins during melting, the surface

and internal absorption will become very small. When snow vanishes, surface absorption

can then become that for the bare sea ice case, namely the solar radiation absorbed in the

sea ice SSL.

Variable Number of Sea Ice Layers

For the bare sea ice case, we continue to sub-divide the top layer into a surface scattering

layer (SSL) and a drained layer (DL), i.e. layers h1/4 and h3/4 of Table 1, respectively.

To approximately conserve the broadband albedos and transmittances, the DL extinction

coefficient is multiplied by the number of evenly-spaced sea ice layers over the standard

number of four. This empirical approximation partially accounts for the variation in DL

optical path with variable number of sea ice layers. We treat the SSL in the same manner

as previously: SSL thickness .05 m unless total sea ice thickness hi is less than 1.5 m,

otherwise hi/30. When the top sea ice layer becomes less than twice the SSL thickness, we

set the SSL thickness to half the top layer thickness (see Table 1).

Table D shows albedos and spectral transmittances to the underlying ocean for a wide

range of sea ice layer numbers for thin (0.1 m), moderate (1.0 m) and thick (5.0 m) sea

ice. We include results for one ponded sea ice case.

The variations in sea ice albedos and spectral transmittances with varying number of

sea ice layers arise from approximations in the Delta-Eddington solar radiation treatment

discussed in section 4. Nevertheless, the variations for broad band albedo are within the

uncertainty of measurements reported in section 5.3 . Uncertainties in the transmittances

are not known very well, but the variations shown in Table D become large for layer

numbers much less than or much greater than the standard four layer case, especially for

thinner bare sea ice and ponded ice. Any user of the Delta-Eddington solar radiation

treatment who uses a different number of sea ice layers than the standard four needs to be

aware of these changes in important AOPs.
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Table D. Broadband albedos and spectral transmittances for Delta-Eddington solar radi-

ation treatment, for various number of sea ice layers. “Alb” is albedo, “Tr” transmittance

through the sea ice to the ocean, “bb” broadband, “vs” visible and “ni” near-infrared.

Atmosphere radiation model and profile (Appendix C) has an overcast low stratus cloud.

The solar zenith angle is 60◦. Albedos and transmittances are for diffuse incident radiation

on the sea ice, with hi the sea ice thickness and hp the pond depth.

Ice Layer Number Alb(bb) Tr(vs) Tr(ni)

0.2− 5.0µm 0.2 − 0.7µm 0.7− 5.0µm

Bare Sea Ice hi =0.1 m

1 .229 .741 .414

2 .241 .708 .213

4 .246 .692 .146

16 .242 .692 .113

64 .243 .687 .099

Bare Sea Ice hi =1.0 m

1 .584 .265 0

2 .592 .190 0

4 .595 .156 0

16 .591 .142 0

64 .593 .125 0

Bare Sea Ice hi =5.0 m

1 .657 .034 0

2 .657 .004 0

4 .657 .002 0

16 .657 0 0

64 .655 0 0

Ponded Sea Ice hi =1.0 m, hp =0.2 m

1 .195 .288 0

2 .198 .289 0

4 .204 .280 0

16 .218 .242 0

64 .226 .212 0
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Appendix E: Glossary of Acronyms

Term Description

AOP Apparent Optical Property

(e.g. albedo, absorbed and transmitted flux)

Chl a Chlorophyll a

CC Cloud Cover (i.e. fraction of horizontal coverage)

CCM3 Community Climate Model Version 3

CCSM Community Climate System Model

CCSM3 Community Climate System Model Version 3

CP Cloud Path (i.e. cloud liquid water, or mass path)

DE Delta-Eddington solar radiation

DL Drained layer between the surface scattering layer and ice interior

DOM Discrete Ordinate radiation Model

INT Interior sea ice below the drained layer

IOP Inherent Optical Property

(e.g. extinction coefficient, single scattering albedo and asymmetry parameter)

MC Monte Carlo radiation model

SGER Small Grant for Experimental Research

SHEBA Surface Heat Budget of the Arctic field experiment 1997-1998

SNICAR SNow Ice and Aerosol Radiative model

SSL Surface scattering layer

SW Shortwave (0.2 to 5.0µm wavelength solar radiation)

x1 CCSM high horizontal resolution ocean/sea ice grid

x3 CCSM low horizontal resolution ocean/sea ice grid
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Figure 1. Sea ice layer structure, showing the surface scattering layer in relation to the

drained layer and lower interior layers, for three sea ice thicknesses. hi is the total sea ice

thickness, with hi/4 the thickness for the lowest three interior layers. The surface scattering

layer thickness h1/4 is hi/30 for sea ice thinner than 1.50 m, and .05 m for thicker sea ice.

The drained layer just below the surface scattering layer has thickness h3/4 = hi/4 − h1/4.

Figure shown to scale, including sea ice freeboard.
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Figure 2. Types of snow/sea ice surfaces used in the Delta-Eddington solar radiation

treatment. The first type is that for snow of depth hs that completely covers the underlying

sea ice (lower part of the figure). The second is that for ponded sea ice with no snow cover

hs = 0, where the fractional coverage of bare sea ice is 1−fp and that of ponds fp > 0 (upper

part of figure). Ponded sea ice is covered with ponds of depth hp > 0, and the sea ice under

the pond does not have an optically thick surface scattering layer. The surface scattering

layer thickness is h1/4, the drained layer thickness just below the surface scattering layer is

h3/4 = hi/4− h1/4, where hi is the total sea ice thickness, and the lowest three interior layers

have thickness hi/4. Snow and the surface scattering layer (where present) are hatched.

Sea ice under pond is colored light gray, while pond is colored dark gray.
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Figure 3. The refractive boundary location between the h1/4 granular surface scattering

layer and the h3/4 solid drained layer. A portion of the direct radiation at cosine zenith

angle µ incident on the top of the sea ice transmits the h1/4 surface scattering layer, is

refracted by the refractive boundary into cosine zenith angle µn, and continues into the

h3/4 solid drained layer. The reflectivity and transmissivity to direct radiation at the

refractive boundary are Rf (µ) and Tf (µ) respectively. The reflectivity and transmissivity

to diffuse radiation from above the refractive boundary layer are Rfa and T fa respectively,

and from below the refractive layer Rfb and T fb respectively.
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Figure 4. Snow albedo vs grain radius. Based on Mie calculations for equivalent ice spheres,

from Wiscombe and Warren (1980), and Warren (personal communication). Albedos com-

puted with the Delta-Eddington method for an optically thick homogeneous snow layer

at 1nm spectral resolution and solar irradiance weighted over the various bands, for an

incident beam with µ0 = 0.5.
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Figure 5. Broadband snow albedo vs snow thickness from the Delta-Eddington solar radi-

ation parameterization, for various snow grain radii rs. Overcast and clear sky conditions

with cosine solar zenith angle µ0 = 0.5. Snow overlies sea ice of thickness 1.5 m. As snow

thins regardless of snow grain radius, the underlying sea ice (overcast broad band albedo

0.647) is uncovered. One clear sky case is shown for 2500µm grain size. The clear sky

broadband albedo is lower for this case because of greater proportion of near-ir irradiance

compared to visible than in the overcast case. For this case of 2500µm grain size and clear

sky, a few centimeters of snow actually absorbs more than the underlying sea ice.
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Figure 6. Averaged spectral albedos and related standard deviations for bare and ponded

ice obtained along the albedo line during the SHEBA observations of the summer of 1998.

The ponded ice spectral albedos are for 100% pond coverage.

86



Figure 7. Average spectral albedos for bare and ponded ice. Ponded ice albedos are

for 100% pond coverage. Observed bare ice and ponded ice spectral albedos and related

standard deviations were obtained along the albedo line during the SHEBA observations

of the summer of 1998. For the model calculations, bare sea ice is 2.0 m thick, while

pond-over-ice is 0.35 m deep and ice-under-pond is 1.5 m thick. The Delta-Eddington

solar parameterization uses IOPs from Tables 12 and 15, and includes algal absorption in

the lowest layer of sea ice for both bare sea ice and ponded ice. CCSM3 parameterization

spectral albedos are shown for bare sea ice.
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Figure 8. Spectral transmittance for a variety of bare ice locations measured during the

SHEBA summer, where FY=first year ice, MY=multi-year ice. For observed spectra,

dates, ice types and thicknesses are as follows: 15 Aug (FY ice, 100 cm), 6 August (MY

ice, 155 cm), 27 July (MY ice, 168 cm); 7 June (FY shorefast ice off Pt. Barrow, AK, 140

cm). Model predicted transmittances are for bare ice with thickness 100 cm, 150 cm, and

200 cm. The Delta-Eddington radiative transfer calculations are shown as solid colored

lines. The lowest layer of sea ice includes algal absorption of 75 mg Chl a m−2 over a 0.5

m thick layer (see Table 16), and therefore a visible absorption optical depth of 0.3 .
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Figure 9. Observed and modeled spectral transmittance for a melt pond on 27 July (Multi-

year ice, 146 cm ice thickness). The model calculation is for ponded ice with thickness 150

cm underlying 50 cm of water. It was computed using the IOPs of Table 15, along with

the Delta-Eddington radiative transfer calculation. The lowest layer of sea ice includes

algal absorption of 75 mg Chl a m−2 over a 0.5 m thick layer (see Table 16), and therefore

a visible absorption optical depth of 0.3 .
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Figure 10. Average albedos for bare and ponded ice along with model calculated band-

averaged albedos for ice scattering coefficients increased/decreased by one standard devia-

tion (+/-15%) for bare ice (green), two standard deviations (+/- 30%) for bare ice (cyan),

and one standard deviation for ponded ice (+300%, -50%, green). Bare ice and ponded ice

spectral albedos and related standard deviations were obtained along the albedo line dur-

ing the SHEBA observations of the summer of 1998. The model calculated band-averaged

albedos use the IOPs of Tables 12 and 15, along with the Delta-Eddington radiative trans-

fer calculation. For the model calculations, bare sea ice is 2.0 m thick, while pond-over-ice

is 0.35 m deep and ice-under-pond is 1.5 m thick.
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Figure 11. Model predicted transmittance for 1.5 m thick bare ice calculated using ±
15% change in scattering to represent one standard deviation change in surface albedo

and ± 30% change in scattering to represent a two standard deviation change in surface

albedo. Predicted transmittances are compared with observed transmittances shown in

Fig. 8. They were computed using the IOPs of Table 12, along with the Delta-Eddington

radiative transfer calculation. The lowest layer of sea ice includes algal absorption of 75

mg Chl a m−2 over a 0.5 m thick layer (see Table 16), and therefore a visible absorption

optical depth of 0.3 .
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Figure 12. Model predicted transmittance for 1.5 m thick ponded ice calculated using -

50% and +300% change in scattering to represent one standard deviation change in surface

albedo. Predictions are compared with observed transmittance for ponded ice on 27 July

(Fig. 9). They were computed using the IOPs of Table 15, along with the Delta-Eddington

radiative transfer calculation. For the model calculations, sea ice is 1.5 m thick and pond-

over-ice is 0.35 m deep. The lowest layer of sea ice includes algal absorption of 75 mg Chl

a m−2 over a 0.5 m thick layer (see Table 16), and therefore a visible absorption optical

depth of 0.3 .
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Figure 13. Broadband albedo vs pond depth over ice of various thicknesses, from the Delta-

Eddington solar radiation parameterization. Overcast conditions with cosine solar zenith

angle µ0 = 0.5 . Pond thicknesses less than .005 m are set to zero, so the leftmost values

are for bare sea ice. For pond depth in the range .005 m to .020 m, IOPs for ponded ice

and bare ice are weighted together by pond depth. The unrealistically large pond depths

(up to 10 m) are included to show how very deep pond broadband albedo asymptotes to

the diffuse ocean broadband albedo of 0.063 .
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Figure 14. Broadband albedo with ice thickness: comparison of Delta-Eddington solar

radiation and CCSM3. Overcast conditions with cosine solar zenith angle µ0 = 0.5 .

Various available observations are included. For the Delta-Eddington solar radiation, the

surface scattering layer thickness is hi/30 for sea ice thinner than 1.50 m, and .05 m for

thicker sea ice, where hi is the total sea ice thickness. For CCSM3 solar radiation, sea ice

thicker than 0.5 m has constant albedo, while sea ice thinner than 0.5 m has an empirical

thickness dependence.
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Figure 15. Comparison of I0 with ice thickness: Delta-Eddington solar radiation (solid)

and CCSM3 (dash). Overcast conditions with cosine solar zenith angle µ0 = 0.5 . I0 is

the fraction of sea ice absorbed solar radiation that penetrates the surface scattering layer.

Visible (vs, 0.2-0.7 µm, blue) and near-ir (nir, 0.7-5.0 µm, red) shown separately. The

near-ir value for CCSM3 is zero.
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Figure 16. Sea ice transmittance to the underlying ocean with ice thickness: comparison

of Delta-Eddington solar radiation (solid) and CCSM3 (dash). Overcast conditions with

cosine solar zenith angle µ0 = 0.5 . Visible (vs, 0.2-0.7 µm, blue) and near-ir (nir, 0.7-5.0

µm, red) shown separately. The near-ir value for CCSM3 is zero.
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Figure 17a. Absorption profiles for bare ice: comparison of Delta-Eddington solar radiation

and CCSM3 visible band. Overcast conditions with cosine solar zenith angle µ0 = 0.5 .

The plain colored bars are for Delta-Eddington, the stippled bars are for CCSM3. The

legend indicates three ice thicknesses, 0.1 m, 1.0 m and 5.0 m.
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Figure 17b. Absorption profiles for bare ice: comparison of Delta-Eddington solar radiation

and CCSM3 near-infrared band. Overcast conditions with cosine solar zenith angle µ0 =

0.5 . The plain colored bars are for Delta-Eddington, the stippled bars are for CCSM3.
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Figure 17c. Absorption profiles for bare ice: comparison of Delta-Eddington solar radiation

and CCSM3 broadband. Overcast conditions with cosine solar zenith angle µ0= 0.5 . The

plain colored bars are for Delta-Eddington, the stippled bars are for CCSM3.
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Figure 18. Broadband albedo vs cosine solar zenith angle for clear sky conditions, from

the Delta-Eddington solar radiation parameterization. The range in solar zenith angles

is appropriate for solstice conditions at the Arctic and Antarctic circles. Snow and pond

completely cover sea ice. Snow and pond thickness over 1.5 m thick sea ice shown; bare

ice thickness shown, and additionally for snow, the grain radius. The decline in broadband

albedo for the lowest elevation angles is due both to predominately diffuse irradiance for

which surface albedos are lower than direct albedos, and to a larger portion of near-ir

irradiance compared to visible irradiance.
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